Valencia, abril de 2016
1. Conjuntos, aplicaciones, números
1
En este libro, un conjunto A es una colección de objetos a los que llamamos elementos de A. Dado un objeto x y un conjunto A, decimos que x pertenece a A si x es un elemento de A. En este caso escribimos x ∈ A. En caso contrario, decimos que x no pertenece a A, y escribimos x ∉ A.
Denotamos los conjuntos con letras mayúsculas, y los definimos especificando o describiendo con exactitud los elementos que pertenecen a ellos. Por ejemplo, A = {1, 2, 3, 4} es el conjunto cuyos elementos son 1, 2, 3 y 4. Así, escribimos 3 ∈ A y 5 ∉ A. El conjunto B = {1, {1, 2}, {1, 2, 3}} tiene tres elementos: 1, el conjunto {1, 2}, y el conjunto {1, 2, 3}. Por tanto, escribimos {1, 2, 3} ∈ B. El conjunto vacío ∅ es el conjunto que no tiene elementos. Un conjunto A es finito si tiene un número finito de elementos. En este caso escribimos |A| para denotar el número de elementos del conjunto A. Por ejemplo, |{1, 2, 3, 4}| = 4, |{1, {1, 2}, {1, 2, 3}}| = 3 y |∅| = 0.
No siempre es posible o conveniente listar todos y cada uno de los elementos de un conjunto: nos basta con que describamos con precisión los que pertenecen a él. Por ejemplo, el conjunto
C = {x ∈ ℕ | x = 2n + 1 para algún n ∈ ℕ}
es el conjunto de los números naturales impares. En este libro, los números naturales son los elementos del conjunto ℕ = {0, 1, 2, 3, …}. Algunos autores no consideran 0 como número natural, pero esta es una polémica inútil. La línea vertical “|” en la definición del conjunto C se lee “tal que”; así, decimos que C es el conjunto de los números naturales x tales que pueden escribirse de la forma x = 2n + 1 para algún n ∈ ℕ. Algunos autores utilizan “:” en lugar de la línea vertical. Los lectores deben ser conscientes de que diferentes autores pueden utilizar notaciones distintas y de que esto no es necesariamente negativo. Volviendo a C, podríamos haber escrito
C = {2n + 1 | n ∈ ℕ}
que es una notación más ágil.
Considaremos ahora el conjunto D = {n ∈ ℕ | 0 < n > 5} y lo comparamos con el conjunto A = {1, 2, 3, 4} definido en el segundo párrafo. Desde luego, observamos que D y A son iguales, pero necesitamos formular esto de forma precisa. Si A y B son conjuntos, decimos que A está contenido en B si para todo a ∈ A se tiene que a ∈ B. En este caso, escribimos A ⊆ B, y decimos que A es un subconjunto de B. En caso contrario, decimos que A no está contenido en B, y lo escribimos A ⊈ B. Los conjuntos A y B son iguales si A ⊆ B y B ⊆ A, y lo escribimos A = B. En caso contrario, escribimos A ≠ B. Observamos que ∅ ⊆ A para todo conjunto A.
En este punto, debemos sincerarnos con el lector para advertirle que esta aproximación náıf a la teoría de conjuntos tiene algunas consecuencias no deseadas, como la famosa paradoja de Russell. Es evidente que el conjunto de los números naturales no es un número natural, por lo que la expresión ℕ ∉ ℕ, aunque chocante, es cierta. Uno podría construir el conjunto X = {A | A es conjunto y A ∉ A}, y preguntarse si el propio X ∈ X o si X ∉ X. Por ejemplo, ℕ ∈ X pues ℕ ∉ ℕ. Sin embargo, si X ∈ X, esto significaría por definición que X ∉ X, y al contrario. Hemos llegado a una contradicción, pues no puede pasar algo y lo opuesto al mismo tiempo. En definitiva, parece claro que tenemos un problema con nuestra definición de conjunto.
La teoría de conjuntos puede ser desarrollada de una forma axiomática que evita este tipo de contradicciones, pero este libro no es el lugar adecuado para hacerlo. La lógica es la disciplina que se ocupa de este y de otros temas.
Por otra parte, no debemos preocuparnos en exceso, al menos en lo que aqúı se refiere. Es un hecho que la mayor parte de los matemáticos puede desarrollar una carrera exitosa utilizando nuestra definición de conjuntos sin contratiempo alguno en su vida (matemática). Digamos de una forma informal que mientras tratemos con conjuntos pequeños (el conjunto de todos los conjuntos definitivamente no es un conjunto pequeño), no nos vamos a encontrar con grandes problemas.
Dados dos conjuntos A y B, podemos construir nuevos conjuntos. Por ejemplo, la unión de A y B es el conjunto
A ∪ B = {x | x ∈ A ó x ∈ B}.
La intersección es el conjunto
A ∩ B = {x | x ∈ A y x ∈ B}.
La diferencia de A y B es
A − B = {x | x ∈ A y x ∉ B}.
El producto cartesiano de A y B es el conjunto de pares
A × B = {(a, b) | a ∈ A, b ∈ B},
donde entendemos que (a, b) = (a′, b′) si y solo si a = a′ y b = b′.
Si A = {1, 2, 3} y B = {3, 4}, entonces A ∪ B = {1, 2, 3, 4}, A ∩ B = {3}, A − B = {1, 2} y A × B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}.
Desde luego, podemos unir o intersectar una colección arbitraria de conjuntos. Si I es un conjunto, y para cada i ∈ I tenemos definido un conjunto Ai, que depende de i, entonces definimos
Por ejemplo, si para n ∈ ℕ, definimos An = {m ∈ ℕ | m ≥ n}, entonces tenemos que
Si A1, …, An son conjuntos, definimos
Si el lector está leyendo este primer capítulo, cabe la posibilidad de que no esté demasiado habituado a probar teoremas, habilidad que solo se adquiere con práctica, y leyendo muchas demostraciones. Probamos nuestro primer teorema.
Teorema 1.1 (Leyes de Morgan) Supongamos que X, I y Ai para i ∈ I son conjuntos. Entonces
Demostración. Probamos (a), por ejemplo. Queremos probar que dos conjuntos son iguales. Por tanto, debemos probar que X − (⋃i∈I Ai) está contenido en ⋂i∈I (X − Ai), y la inclusión contraria. Sea x ∈ X − (⋃i∈I Ai). Esto significa que x ∈ X y que x ∉ ⋃i∈I Ai. Por la definición de unión de una colección de conjuntos, tenemos que x ∉ Ai para todo i ∈ I. Así, x ∈ X − Ai para todo i ∈ I, y por la definición de intersección de una colección