Microbial Interactions at Nanobiotechnology Interfaces. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Отраслевые издания
Год издания: 0
isbn: 9781119617174
Скачать книгу
& Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6, 6 nanocomposites. Instrumentation Science & Technology, 44(4), 435–444.

      120 Salavati‐Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514–3518.

      121 Saliani, M., Jalal, R., & Goharshadi, E. K. (2015). Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur Journal of Microbiology, 8(2), e17115.

      122 Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio‐reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 26.

      123 Satishkumar, R., & Vertegel, A. (2008). Charge‐directed targeting of antimicrobial protein‐nanoparticle conjugates. Biotechnology and Bioengineering, 100(3), 403–412.

      124 Schwarz, S., Kehrenberg, C., Doublet, B., & Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews, 28(5), 519–542.

      125 Sharma, N., Jandaik, S., Kumar, S., Chitkara, M., & Sandhu, I. S. (2016). Synthesis, characterisation and antimicrobial activity of manganese‐and iron‐doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11(1), 54–71.

      126 Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851.

      127 Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423.

      128 Shen, Q., Jiang, L., Zhang, H., Min, Q., Hou, W., & Zhu, J.‐J. (2008). Three‐dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. The Journal of Physical Chemistry C, 112(42), 16385–16392.

      129 Singh, P., Garg, A., Pandit, S., Mokkapati, V., & Mijakovic, I. (2018). Antimicrobial effects of biogenic nanoparticles. Nanomaterials, 8(12), 1009.

      130 Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V. R., Sultan, A., … Daugaard, A. E. (2018). Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. International Journal of Nanomedicine, 13, 3571.

      131  Stouwdam, J. W., & Janssen, R. A. (2008). Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. Journal of Materials Chemistry, 18(16), 1889–1894.

      132 Sudhasree, S., Shakila Banu, A., Brindha, P., & Kurian, G. A. (2014). Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological & Environmental Chemistry, 96(5), 743–754.

      133 Sukhorukova, I., Sheveyko, A., Kiryukhantsev‐Korneev, P. V., Zhitnyak, I., Gloushankova, N., Denisenko, E., … Shtansky, D. (2015). Toward bioactive yet antibacterial surfaces. Colloids and Surfaces B: Biointerfaces, 135, 158–165.

      134 Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267.

      135 Sun, S., & Zeng, H. (2002). Size‐controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124(28), 8204–8205.

      136 Sun, Y., & Xia, Y. (2002). Shape‐controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176–2179.

      137 Sundar, S., & Kumar Prajapati, V. (2012). Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Current Medicinal Chemistry, 19(19), 3196–3202.

      138 Tai, C. Y., Tai, C.‐T., Chang, M.‐H., & Liu, H.‐S. (2007). Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial & Engineering Chemistry Research, 46(17), 5536–5541.

      139 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (pp. 133–164). Springer.

      140 Tiwari, D. K., Behari, J., & Sen, P. (2008). Application of nanoparticles in waste water treatment. World Applied Science Journal, 3(3), 417–433.

      141 Tong, T., Shereef, A., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J. F., & Gray, K. A. (2013). Effects of material morphology on the phototoxicity of nano‐TiO2 to bacteria. Environmental Science & Technology, 47(21), 12486–12495.

      142 Van Dong, P., Ha, C. H., Binh, L. T., & Kasbohm, J. (2012). Chemical synthesis and antibacterial activity of novel‐shaped silver nanoparticles. International Nano Letters, 2, 9. doi:https://doi.org/10.1186/2228‐5326‐2‐9

      143 Veerapandian, M., Lim, S. K., Nam, H. M., Kuppannan, G., & Yun, K. S. (2010). Glucosamine‐functionalized silver glyconanoparticles: Characterization and antibacterial activity. Analytical and Bioanalytical Chemistry, 398(2), 867–876.

      144 Vollath, D. (2013). Nanoparticles‐Nanocomposites–Nanomaterials: An Introduction for Beginners. Wiley.

      145 Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T., & von der Kammer, F. (2014). Spot the difference: Engineered and natural nanoparticles in the environment – Release, behavior, and fate. Angewandte Chemie International Edition, 53(46), 12398–12419.

      146  Wang, H., Castner, D. G., Ratner, B. D., & Jiang, S. (2004). Probing the orientation of surface‐immobilized immunoglobulin G by time‐of‐flight secondary ion mass spectrometry. Langmuir, 20(5), 1877–1887.

      147 Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

      148 Weaver, C. L., LaRosa, J. M., Luo, X., & Cui, X. T. (2014). Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 8(2), 1834–1843.

      149 Wei, T., Chen, C., Liu, J., Liu, C., Posocco, P., Liu, X., … Fermeglia, M. (2015). Anticancer drug nanomicelles formed by self‐assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences, 112(10), 2978–2983.

      150 Wigginton, N. S., Titta, A. D., Piccapietra, F., Dobias, J., Nesatyy, V. J., Suter, M. J., & Bernier‐Latmani, R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168.

      151 Wu, J., Shen, Y., Jiang, W., Jiang, W., & Shen, Y. (2016). Magnetic targeted drug delivery carriers encapsulated with pH‐sensitive polymer: Synthesis, characterization and in vitro; doxorubicin release studies. Journal of Biomaterials Science, Polymer Edition, 27(13), 1303–1316.

      152 Xia, W., Grandfield, K., Hoess, A., Ballo, A., Cai, Y., & Engqvist, H. (2012). Mesoporous titanium dioxide coating for metallic implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(1), 82–93.

      153 Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., … Yan, H. (2003). One‐dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 15(5), 353–389.

      154 Xiong, M. H., Li, Y. J., Bao, Y., Yang, X. Z., Hu, B., & Wang, J. (2012). Bacteria‐responsive multifunctional nanogel for targeted antibiotic delivery. Advanced Materials, 24(46), 6175–6180.

      155 Yang, H., Chen, Z., Zhang, L., Yung, W. Y., Leung, K. C. F., Chan, H. Y. E., & Choi, C. H. J. (2016). Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small, 12(37), 5178–5189.

      156 Yang, H.‐H., Zhang, S.‐Q., Chen, X.‐L., Zhuang, Z.‐X., Xu, J.‐G., & Wang, X.‐R. (2004). Magnetite‐containing