5 Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16.
6 Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.
7 Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65(13–14), 1816–1827.
8 Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrobial Agents and Chemotherapy, 37(8), 1563.
9 Astefanei, A., Núñez, O., & Galceran, M. T. (2015). Characterisation and determination of fullerenes: A critical review. Analytica Chimica Acta, 882, 1–21.
10 Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2007). From diagnostics to therapy: Prospects of quantum dots. Clinical Biochemistry, 40(13–14), 917–927.
11 Baig, M. S., Ahad, A., Aslam, M., Imam, S. S., Aqil, M., & Ali, A. (2016). Application of Box–Behnken design for preparation of levofloxacin‐loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro; release, ocular tolerance, and antibacterial activity. International Journal of Biological Macromolecules, 85, 258–270.
12 Bansal, V., Li, V., O'Mullane, A. P., & Bhargava, S. K. (2010). Shape dependent electrocatalytic behaviour of silver nanoparticles. CrystEngComm, 12(12), 4280–4286.
13 Berry, V., Gole, A., Kundu, S., Murphy, C. J., & Saraf, R. F. (2005). Deposition of CTAB‐terminated nanorods on bacteria to form highly conducting hybrid systems. Journal of the American Chemical Society, 127(50), 17600–17601.
14 Bismuth, R., Zilhao, R., Sakamoto, H., Guesdon, J., & Courvalin, P. (1990). Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrobial Agents and Chemotherapy, 34(8), 1611–1614.
15 Biswas, S., Deshpande, P. P., Navarro, G., Dodwadkar, N. S., & Torchilin, V. P. (2013). Lipid modified triblock PAMAM‐based nanocarriers for siRNA drug co‐delivery. Biomaterials, 34(4), 1289–1301.
16 Bleeker, E., Cassee, F., Geertsma, R., de Jong, W., Heugens, E., Koers‐Jacquemijns, M., … Rietveld, A. (2012). Interpretation and implications of the European Commission's definition on nanomaterials. RIVM Letter Report 601358001, 43.
17 Boverhof, D. R., Bramante, C. M., Butala, J. H., Clancy, S. F., Lafranconi, M., West, J., & Gordon, S. C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73(1), 137–150.
18 Bunker, C. E., Novak, K. C., Guliants, E. A., Harruff, B. A., Meziani, M. J., Lin, Y., & Sun, Y.‐P. (2007). Formation of protein−metal oxide nanostructures by the sonochemical method: Observation of nanofibers and nanoneedles. Langmuir, 23(20), 10342–10347.
19 Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering C, 35, 100–105.
20 Cavassin, E. D., de Figueiredo, L. F. P., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., … Costa, S. F. (2015). Comparison of methods to detect the in vitro; activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1), 64.
21 Cha, S.‐H., Hong, J., McGuffie, M., Yeom, B., VanEpps, J. S., & Kotov, N. A. (2015). Shape‐dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 9(9), 9097–9105.
22 Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. The FEBS Journal, 277(20), 4184–4194.
23 Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape‐dependent antimicrobial activities of silver nanoparticles. International Journal of Nanomedicine, 14, 2773.
24 Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668.
25 Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292.
26 Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293(5533), 1289–1292.
27 Daeihamed, M., Dadashzadeh, S., Haeri, A., & Faghih Akhlaghi, M. (2017). Potential of liposomes for enhancement of oral drug absorption. Current Drug Delivery, 14(2), 289–303.
28 Daima, H. K., & Bansal, V. (2015). Influence of physicochemical properties of nanomaterials on their antibacterial applications. In M. Owais (Ed.), Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases (pp. 151–166). Elsevier.
29 Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831–1831.
30 Della Valle, C., Visai, L., Santin, M., Cigada, A., Candiani, G., Pezzoli, D., … Chiesa, R. (2012). A novel antibacterial modification treatment of titanium capable to improve osseointegration. The International Journal of Artificial Organs, 35(10), 864–875.
31 Dorobantu, L. S., Fallone, C., Noble, A. J., Veinot, J., Ma, G., Goss, G. G., & Burrell, R. E. (2015). Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of Nanoparticle Research, 17(4), 172.
32 Drake, D. R., Brogden, K. A., Dawson, D. V., & Wertz, P. W. (2008). Thematic review series: Skin lipids. Antimicrobial lipids at the skin surface. Journal of Lipid Research, 49(1), 4–11.
33 Ealias, A. M., & Saravanakumar, M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. Paper presented at the P Conf. Ser. Mater. Sci. Eng. 263 (2017) 032019, May 2–3 2017, VIT university, Vellore, Tamil Nadu, India.
34 El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2010). Surface charge‐dependent toxicity of silver nanoparticles. Environmental Science & Technology, 45(1), 283–287.
35 Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho‐Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV‐1. Journal of Nanobiotechnology, 3(1), 6.
36 Fajardo, A., Martínez‐Martín, N., Mercadillo, M., Galán, J. C., Ghysels, B., Matthijs, S., … Baquero, F. (2008). The neglected intrinsic resistome of bacterial pathogens. PLoS One, 3(2), e1619.
37 Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against Gram‐positive and Gram‐negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103–109.
38 Feng, Q. L., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.
39 Fernandez‐Lopez, S., Kim, H.‐S., Choi, E. C., Delgado, M., Granja, J. R., Khasanov, A., … Wilcoxen, K. M. (2001). Antibacterial agents based on the cyclic D, L‐α‐peptide architecture. Nature, 412(6845), 452.
40 Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577.
41 Gao, M., Sun, L., Wang, Z., & Zhao, Y. (2013). Controlled synthesis of Ag nanoparticles with different morphologies and