Для расчета площади сечения коробовой кривой :
Большой радиус Rb = КВ; Зная стороны ВК и ХВ – находим угол сектора « W ».
Зная радиус Rb и угол сектора « W » – найдем площадь сектора.
Зная стороны ОК и ОE прямоугольного треугольника – найдем его площадь
и вычтем из площади сектора радиуса Rb.
Малый радиус Rm = EА; Зная угол « W » прямоугольного треугольника КХВ
определяем угол сектора малого радиуса как:
G = 90 – W; Далее: определим площадь сектора малого радиуса.
Площадь сечения коробовой кривой найдена.
Найдем диаметр круга равный по площади заданной коробовой кривой:
.d =sqrt( 4*S / Pii ); Где S – площадь заданной коробовой кривой.
Контрольный расчет:
Дано:
Большая ось = 80; Малая ось = 60;
Расчет:
Больший радиус = 50,0..
От оси до центра Б. радиуса = 20,0..
Меньший радиус = 25,0..
От оси до центра M. радиуса = 15,0..
Угол раствора Б. радиусов = 73,73979529168804..
Площадь ограниченная коробовой кривой = 3776,62456647;
Диам. Круга равной площади = 69,34369289;
Геометрия радиусной кривой.
Все расчеты по разным вариантам исходных данных:
Хорда L; Прогиб Н; Радиус R; Угол G.
Эти расчеты часто требуются для нахождения элементов детали имеющих форму сегмента окружности.
Расчет производим из следующих соотношений:
В = sqrt( R*R – X*X); L = X + X; H = R – B; G = аrcsin ( X / R );
Длина дуги = Pii * R * G / 90;
Площадь сектора Ss = Pii * R * R * G / 180;
Площадь треугольника под хордой St = L * B /2;
Площадь сегмента ( горбушки ) Sg = Ss – St;
Некоторые комбинации данных не позволяют прямого расчета,
тогда применяем метод компьютерного подбора.
Контрольный расчет:
Радиус R = 1000;
Диаметр D = R+R; D = 2000; Хорда L = 765,3668647;
Стрела прогиба максимальная H = 76,12046749;
Угол: Центр – Хорда: 2 * G = Au = 45 градусов..
Площадь сектора круга с углом = Au:
Sk=Pii*D*D* Au /(4*360); Sk = 392699,0816987241;
Площадь треугольника в секторе:
St=(L/2)* B; St = 353553,3905932738;
Площадь горбушки отсеченной хордой:
S = Sk-St; S = 39145,69110545033;
Длина дуги над хордой:
L=Pii*D*Au /360; L = 785,3981634;
Координаты радиусной кривой.
Построение части окружности методом подъема применяется тогда, когда радиус слишком велик
для традиционного построения, либо когда точка центра радиуса недоступна.
Построение части окружности методом подъема.
Построение:
Задаем максимальный размер хорды L.
Из середины максимальной хорды L строим перпендикуляр Н1.
Х1 = L / 2; В = sqrt( R*R – X1*X1); H1 = R – B;
Определили максимальную стрелу прогиба кривой H1.
Далее задаем произвольное расстояние от центральной оси Х2.
Находим стрелу прогиба Н2 = R – ( sqrt( R*R – X2*X2));
Находим высоту подъема в точке Х2: Hm = H1 – H2;
Задавая ряд текущих значений Х2 и рассчитывая соответствующие высоты подъема Hm
– получаем достаточное количество точек,
для построения радиусной кривой по точкам на этой кривой.
Контрольный расчет:
Исходные