Metal Oxide Nanocomposites. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9781119364733
Скачать книгу
A.C.S., Analytical prediction of thermophysical properties of fluids embedded with nanostructured materials. Int. J. Nanopart., 1, 1, 32–49, 2008.

      121. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Keblinski, P., Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett., 89, 14, 143119-1–143119-3, 2006.

      122. Prasher, R., Phelan, P.E., Bhattacharya, P., Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett., 6, 7, 1529–1534, 2006.

      124. Ghaly, E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., Production, characterization and treatment of textile effluents: a critical review. J. Chem. Eng. Process. Technol., 5, 1, 2014.

      125. Malik, R., Rana, P.S., Tomer, V.K., Chaudhary, V., Nehra, S.P., Duhan, S., Visible light-driven mesoporous Au-TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram. Int., 42, 10892–10901, 2016.

      126. Khan, Z., Chetia, T.R., Vardhaman, A.K., Barpuzary, D., Sastri, C.V., Qureshi, M., Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of grapheme oxide. RSC Adv., 2, 12122, 2012.

      127. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Microflower assembly of porous Au loaded TiO2/SnO2 nanohybrids as highly efficient visible light photocatalyst and selective VOCs sensor. ChemistrySelect (Wiley), 1, 3247–3258, 2016.

      128. Giwa, P.O., Nkeonye, K.A., Bello, K.A., Kolawole, Photocatalytic decolourization and degradation of basic blue 41 using TiO2 nanoparticles. J. Environ. Prot., 3, 1, 2012.

      129. Buthelezi, S.P., Olaniran, A.O., Pillay, B., Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260, 2012.

      130. Pereira, L, and Alves M., Dyes—environmental impact and remediation. Environmental protection strategies for sustainable development. Springer, Dordrecht, 111–162, 2012.

      131. Tahir, U., Yasmin, A., Khan, U.H., Phytoremediation: potential flora for synthetic dyestuff metabolism. J. King Saud. Univ. Sci., 28, 119–130, 2016.

      132. Hunger, K., Industrial dyes: chemistry, properties, applications, Wiley, Frankfurt, 2008.

      133. Needles, H.L., Textile fibers, dyes, finishes and processes, Noyes, Jersey, 1986.

      134. Singh, B. and Sharma, N., Mechanistic implications of plastic degradation. Polym. Degrad. Stab., 93, 561, 2008.

      135. Duhan, S., Dehiya, B.S., Tomer, V., Microstructure and photo-catalytic dye degradation of silver–silica nano composites synthesized by sol–gel method. Adv. Mater. Lett., 4, 317–322, 2013.

      136. Duhan, S. and Tomer, V.K., Advance Electronics: Looking Beyond Silicon, in: Advanced Energy Materials, pp. 295–326, Wiley-Scrivener, U.S.A, 2014.

      137. Tomer, V.K., Thangaraj, N., Gahlot, S., Kailasam, K., Cubic mesoporous Ag@ CN: A high performance humidity sensor. Nanoscale, 8, 19794–19803, 2016.

      138. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor. Sens. Actuators B: Chem., 239, 364–373, 2017.

      140. Tomer, V.K. and Duhan, S., Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sens. Actuators B: Chem., 220, 192–200, 2015.

      141. Naderi, M. and Danesh-Shahraki, A., Nano fertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci., 5, 19, 2229–2232, 2013.

      142. Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot., 35, 64–70, 2012.

      143. Nasiri, A., Shariaty-Niasar, M.S.-N., Akbari, Z., Synthesis of LDPE/nano TiO2nanocomposite for 792 packaging applications. Int. J. Nanosci. Nanotechnol., 8, 165–170, 2012.

      144. Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., Toniolo, R., Effect of TiO2 photocatalytic activity in a HDPE based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem., 138, 1633–1640, 2013.

      145. Luo, Z., Qin, Y., Ye, Q., Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int. J. Food Sci. Technol., 50, 1567–1573, 2015.

      146. Cerrada, M.L., Serrano, C., Sánchez-Chaves, M., Fernández-García, M., Fernández-Martín, F., de Andrés, A., 620Riobóo, R.J.J., Kubacka, A., Ferrer, M., Fernández-García, M., Self-sterilized EVOH-TiO2621 nanocomposites: Interface effects on biocidal properties. Adv. Funct. Mater., 18, 1949–1960, 2008.

      147. Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., Muhammed, M., Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 15, 4343–4351, 2003.

      148. Wang, W. and Zhang, Z., Hydrothermal synthesis and characterization of carbohydrate microspheres coated with magnetic nanoparticles. J. Dispers. Sci. Technol., 28, 557–561, 2007.

      149. Haldorai, Y. and Shim, J.-J., Multifunctional chitosan copper oxide hybrid material: photocatalytic and antibacterial activities. Int. J. Photoenergy, 245646, 2013.

      150. Yang, Y., Li, Y.-Q., Fu, S.-Y., Xiao, H.-M., Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. J. Phys. Chem. C, 112, 10553–10558, 2008.

      151. Son, D.-I., Park, D.-H., Choi, W.K., Cho, S.-H., Kim, W.-T., Kim, T.W., Carrier transport inflexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methac-rylate) polymer layer. Nanotechnology, 20, 195203, 2009.

      153. Jo, Y.J., Choi, E.Y., Choi, N.W., Kim, C.K., Antibacterial and hydrophilic characteristics of poly(ether sulfone) composite membranes containing zinc oxide nanoparticles grafted with hydrophilic polymers. Ind. Eng. Chem. Res., 55, 7801–7809, 2016.

      154. Kwak, S.-Y., Kim, S.H., Kim, S.S., Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling: preparation and characterization of TiO2nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol., 35, 2388–2394, 2001.

      155. Wu, L. and Ritchie, S., Enhanced dechlorination of trichloroethylene by membrane-sup-ported Pd-coated iron nanoparticles. Environ. Prog., 27, 218–224, 2008.

      156. Teli, S.B., Molina, S., Sotto, A., Calvo, E.G.A., Abajob, J.D., Fouling resistant poly-sulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Ind. Eng. Chem. Res., 52, 9470–9479, 2013.

      157. Yu, Z., Liu, X., Zhao, F., Liang, X., Tian, Y., Fabrication of a low-cost nano-SiO2/PVCcomposite ultrafiltration membrane and its antifouling performance. J. Appl. Polym. Sci., 132, 1–11, 2015.

      158. Feng, J., Chen, J., Wang, N., Li, J., Shi, J., Yan, W., Enhanced adsorption capacityof