Metal Oxide Nanocomposites. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9781119364733
Скачать книгу

      79. Shi, J.-W., Zheng, J.-T., Hu, Y., Zhao, Y.-C., Influence of Fe 3+ and Ho 3+ co-doping on the photocatalytic activity of TiO 2. Mater. Chem. Phys., 106, 2, 247–249, 2007.

      80. Shi, J.-w., Preparation of Fe (III) and Ho (III) co-doped TiO 2 films loaded on activated carbon fibers and their photocatalytic activities. Chem. Eng. J., 151, 1, 241–246, 2009.

      81. Xu, L., Hu, Y.-L., Pelligra, C., Chen, C.-H., Jin, L., Huang, H., Sithambaram, S., Aindow, M., Joesten, R., Suib, S.L., ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater., 21, 13, 2875–2885, 2009.

      82. Liu, L., Liu, H., Zhao, Y.-P., Wang, Y., Duan, Y., Gao, G., Ge, M., Chen, W., Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol., 42, 7, 2342–2348, 2008.

      83. Bunn, C., The lattice-dimensions of zinc oxide. Proc. Phys. Soc., 47, 5, 835, 1935.

      84. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J.T., Liang, Y., Cui, Y., Dai, H., Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 132, 40, 13978–13980, 2010.

      85. Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photoch. Photobio. C, 1, 1, 1–21, 2000.

      86. Jiang, Z., Yang, F., Yang, G., Kong, L., Jones, M.O., Xiao, T., Edwards, P.P., The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A: Chem., 212, 1, 8–13, 2010.

      87. Nakata, K., Udagawa, K., Tryk, D.A., Ochiai, T., Nishimoto, S., Sakai, H., Murakami, T., Abe, M., Fujishima, A., Fabrication of micro-patterned TiO 2 thin films incorporating Ag nanoparticles. Mater. Lett., 63, 18, 1628–1630, 2009.

      88. Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., TiO 2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Appl. Surf. Sci., 255, 12, 6221–6225, 2009.

      89. Rastogi, R. and Sharma, S., 2-Aminobenzimidazoles in Organic Syntheses. Synthesis, 861, 1983.

      90. Berton, G.W., Selective monoacetylation of unsymmetrical diols catalyzed by silica gel-supported sodium hydrogen sulfate. J. Org. Chem., 62, 8952–8954, 1997.

      91. Heravi, M.M. and Motamedi, R., Rapid synthesis of some new propanol derivatives analogous to fluconazole under microwave irradiation in solventless system. Heterocycl. Commun., 11, 19–22, 2005.

      93. Kundu, S., A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids Surf. A: Physiochem. Eng. Asp., 446, 199–212, 2014.

      94. Suresh, S., Karthikeyan, S., Jayamoorthy, K., Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int. J. Mod. Sci., 2, 2, 69–77, 2016.

      95. Pour, Z.S. and Ghaemy, M., Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe 2 O 3 by epoxide functionalization. J. Mater. Sci., 49, 4191–4201, 2014.

      96. Escher, W., Brunschwiler, T., Michel, B., and Poulikakos, D. Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips. ASME. J. Heat Transfer., 132, 081402, 2010

      97. Escher, W., Michel, B., Poulikakos, D., Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int. J. Heat Mass Transf., 52, 1421–1430, 2009.

      98. Tuckerman, D.B. and Pease, R.F.W., IIIB-8 implications of high performance heat sinking for electron devices. IEEE Trans. Electron Devices, 28, 1230–1231, 1981.

      99. Wang, Zhou, Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf., 46, 14, 2665–2672, 2003.

      100. Keblinski, Phillpot, Choi, Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf., 45, 4, 855–863, 2002.

      101. Patel, K., Kapoor, S., Dave, D.P., Mukherjee, T., Synthesis of Au, Au/Ag, Au/Pt and Au/Pd nanoparticles using the microwave-polyol method. Res. Chem. Intermed., 32, 103, 2006.

      102. Zhao, P.X., Li, N., Astruc, D., State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665, 2013.

      103. Sun, Y.G. and Xia, Y.N., Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176–2179, 2002.

      104. Lee, W., Scholz, R., Nielsch, K., Gösele, U., A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. Angew. Chem., 117, 6204–6208, 2005.

      105. Davar, F., Loghman-Estarki, M.R., Salavati-Niasari, M., Mazaheri, M., Controllable synthesis of covellite nanoparticles via thermal decomposition method. J. Clust. Sci., 27, 593–603, 2016.

      106. Wang, H., Xu, J.Z., Zhu, J.J., Chen, H.Y., Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth, 244, 88–94, 2002.

      108. Sreeju, N., Rufus, A., Philip, D., Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq., 221, 1008–1021, 2016.

      109. Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A, 372, 172–176, 2010.

      110. Weare, W.W., Reed, S.M., Warner, M.G., Hutchison, J.E., Improved synthesis of small (d core≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc., 122, 12890–12891, 2000.

      111. Schmid, G., Pfeil, R., Boese, R., Bandermann, F., Meyer, S., Calis, G.H.M., van der Velden, Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe, J.W.A., Chem. Ber., 114, 3634–3642, 1981.

      112. Prasher, Bhattacharya, Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett., 94, 2, 025901, 2005.

      113. Evans, Fish, Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett., 88, 9, 093116–3, 2006.

      114. Keblinski, Prasher, Eapen, Thermal conductance of nanofluids: is the controversy over? J. Nanopart. Res., 10, 7, 1089–1097, 2008.

      115. Diallo, S.O., Pore-size dependence and characteristics of water diffusion in slitlike micropores. Phys. Rev. E, 92, 012312, 2015.

      116. Qin, Z. and Buehler, M.J., Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity. Nano Lett., 15, 3939–44, 2015.

      117. Osti, N., Coté, A., Mamontov, E., Ramirez-Cuesta, A., Wesolowski, D., Diallo, S., Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chem. Phys., 465, 1–8, 2016.

      118. Turanov, A. and Tolmachev, Y.V., Heat-and mass-transport in aqueous silica nanofluids. Heat Mass Transfer, 45, 1583–8, 2009.

      119. Khan, S.H., Matei, G., Patil, S., Hoffmann, P.M., Dynamic solidification in nanoconfined water films. Phys. Rev. Lett., 105, 106101, 2010.