Игровая площадка «Земля». Приключенческая теория Мироздания. Алексей Лельчук. Читать онлайн. Newlib. NEWLIB.NET

Автор: Алексей Лельчук
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Философия
Год издания: 2020
isbn: 978-5-532-06040-1
Скачать книгу
уменьшение и увеличение расстояния, так что мячи действительно долетают до стенок одновременно.

      Теперь изменим условия эксперимента. Поезд, станция и наблюдатели будут те же, но человек в поезде будет звонить в колокол, а не бросать мячи. Движение звука определяется уже не силой броска, а тем, как звуковые волны распространяются по воздуху. Звук колокола будет лететь вперед и назад со скоростью звука (около 1200 км/ч) и достигнет обеих стенок вагона одновременно. Предположим, что на стенках закреплены микрофоны и лампочки, так что лампочки мгновенно включаются, когда микрофон поймает звук колокола. Человек в поезде не удивится тому, что обе лампочки вспыхнут мгновенно, потому что, как я сказал раньше, поезд идет плавно, так что человек может и не знать о движении поезда.

      Человек на станции тоже увидит вспышки лампочек одновременно и, немного подумав, догадается, почему. Потому что воздух в закрытом вагоне движется с той же скоростью, что и поезд, поэтому скорость волны бегущей назад уменьшится, а скорость бегущей вперед увеличится так же, как и скорости мячей.

      Еще немного изменим условия эксперимента. Вместо закрытого вагона мы пускаем открытую платформу. Воздух вокруг нее неподвижен, так же, как и человек стоящий на станции, а колокол и стенки платформы движутся. В этом случае звуковые волны побегут не по движущемуся воздуху внутри вагона, а по неподвижному воздуху станции, так что их скорость относительно станции будет одинакова. Но задняя стенка по-прежнему будет набегать на звук, а передняя будет от него убегать, так что, конечно же, задняя лампочка зажжется раньше, чем передняя. Это увидят оба наблюдателя. Для неподвижного это будет очевидно, потому что он понимает, что звук бежит по неподвижному воздуху. Движущийся наблюдатель тоже догадается в чем дело, потому что он будет чувствовать набегающий на него ветер и будет знать, что он движется относительно станции в отличие от предыдущего раза, когда он об этом не догадывался и считал себя и вагон неподвижными.

      И вот последний шаг, когда начинается уже теория относительности – заменим звуковые волны световыми. Заменим поезд на звездолет, который летит со скоростью хотя бы в половину от скорости света (около 300 тысяч км/с пополам), а станцию – на планету, на которой по-прежнему стоит неподвижный наблюдатель. Пролетая мимо наблюдателя на планете, человек в звездолете включает фонарь, лучи которого летят к передней и задней стенкам звездолета. Световые волны распространяются сами по себе, что в космическом вакууме, что в воздухе внутри звездолета. Никакой физически ощутимой среды для распространения света не нужно, поэтому первые физики, которые размышляли об этом мысленном эксперименте, представляли себе, что волны света бегут по гипотетическому эфиру, который пронизывает все пространство, но никак не ощущается физически.

      Здравый смысл подсказывает, что в нашем эксперименте эфир подобен неподвижному воздуху станции из прошлого примера, и свет