Conceptos avanzados del diseño estructural con madera. Pablo Guindos. Читать онлайн. Newlib. NEWLIB.NET

Автор: Pablo Guindos
Издательство: Bookwire
Серия: Conceptos avanzados del diseño estructural con madera
Жанр произведения: Математика
Год издания: 0
isbn: 9789561424647
Скачать книгу
los paneles de CLT tienen geometrías o/y solicitaciones complejas, los modelos de cálculo casi siempre se basan en modelos bidimensionales (plate o shell según se requiera o no considerar las rigideces de membrana) implementados en programas computacionales, principalmente de elementos finitos. De este modo, las verificaciones se realizan de acuerdo a lo recién indicado en la sección 6.3.12, es decir, las verificaciones se basan más bien en criterios de fallo de combinación de tensiones internas en cada una de las láminas. Este tipo de cálculos es mucho más preciso, porque permiten capturar mucho mejor todas las rigideces de los paneles y sus uniones, consideran los efectos biaxiales, permiten incorporar fácilmente las aperturas, y capturan mejor las concentraciones y distribución de tensiones.

      Modelación con elementos tipo viga

      En el resto de situaciones, es decir para los casos más sencillos, se realizan verificaciones —que pueden ser analíticas, aunque también computacionales— basadas en modelos tipo viga tal como se resume en esta sección. La simplificación a elementos tipo viga resulta especialmente conveniente para analizar fácilmente el efecto de cargas fuera del plano (rigidez flexional), o cargas axiales y de corte que sean repetitivas, y en las que no se estime que pueda haber algún tipo de fenómeno de inestabilidad. Y aún en el caso de que pudiera haber problemas de estabilidad, pueden realizarse modificaciones para poder seguir abordando el cálculo analizando únicamente tiras de CLT. En efecto, habitualmente las vigas representan tiras de 1m de ancho, así es que no es extraño que los esfuerzos vengan dados como fuerzas y momentos por unidad de ancho. Por supuesto, el ancho estándar de 1 metro no es obligatorio, aunque sí conveniente para comparar resultados, ya que algunos fabricantes pueden facilitar directamente los esfuerzos máximos por unidad de ancho (dependientes de la geometría) que pueden resistir sus productos en lugar de las tensiones/resistencias (independientes de la geometría). En muchas ocasiones, los modelos empleados como base para la derivación de las verificaciones se basan en simplificaciones del modelo de analogía de corte, aunque también se emplean otros modelos como por ejemplo el modelo la extensión del método gamma, el modelo de corte de Schickhofer u otros de los modelos detallados como base teórica de este capítulo. El lector puede revisar los fundamentos de los diferentes modelos de cálculo en las secciones anteriores.

      Como se ha introducido en secciones anteriores, se desprecia la rigidez de las capas perpendiculares, y las capas longitudinales se pueden asimilar a un sistema de resortes en paralelo en el cual la fuerza se reparte según rigidez axial, EA. De este modo, la verificación propuesta en la NDS para tracción simple, es análoga a la verificación para madera aserrada, con la excepción de que tan sólo se considera el área neta de las capas paralelas a la tracción, las cuales constituyen el área paralela neta (A0,net), y que tampoco se emplea el factor de minoración por altura (Khf). De este modo, la verificación natural en Chile según el criterio ASD resultaría

      O en caso de esfuerzos por unidad de ancho, y tomando el área correspondiente a 1 metro de ancho

      En ocasiones algunos productores pueden facilitar directamente el esfuerzo máximo admisible nx,adm para cada uno de sus productos; en tal caso bastaría con verificar

      En caso de que la tracción sea en el eje y del panel lógicamente se aplicaría

      Por supuesto, el paso de ASD a LRFD es también muy sencillo. En concreto la NDS 2015 propone el uso de los mismos factores de conversión (KF), resistencia (φ) y duración de la carga (λ) que se emplean en la MLE, ver detalles en el Anexo C3.

      Recuérdese que lógicamente el área neta está ponderada por el módulo elástico, lo que permite contemplar la situación en la que no todas las láminas tienen la misma rigidez

      Esto también es aplicable para el sumatorio de espesores efectivos

      De forma análoga, para las tracciones perpendiculares al eje y, deberíamos considerar únicamente las láminas longitudinales respecto de y

      En general, en Europa se emplea como referencia el tamaño de la sección que se muestra en la Figura 1.4.1.1 para efectos de ensayos mecánicos de flexión fuera del plano, y tracción y compresión axial. Esta sección resulta ser similar a las secciones que se emplean para caracterizar la MLE, lo que se emplea como argumento para poder aplicar coeficientes en el CLT que son similares a la MLE. En concreto, se tienden a empelar los mismos valores de kmod (humedad, temperatura y tiempo), γM (seguridad del material) y ksys (colaboración en grupo) que la MLE. En cuanto al factor de altura europeo (kh, similar a Khf), actualmente se recomienda no emplearlo, ya que es relativamente infrecuente que las laminaciones tengan una altura muy superior a la sección de referencia —recordar que en la MLE h puede llegar a ser más de 2 metros.

      FIGURA 1.4.1.1 Sección de referencia empleada en Europa, para determinar propiedades de flexión fuera del plano y tracción y compresión en el plano.

      La determinación de la resistencia a la tracción axial sin embargo sí es diferente según el método europeo. En Europa se asume que por lo general un elemento de CLT suele tener alrededor de 12 tablones trabajando en paralelo al ser sometido a una carga axial, así es que se aplica un factor de carga compartida (ksys, similar a Kc en Chile) lo que permite considerar el hecho de que los tablones de mayor calidad suelen absorber mayor carga por tener mayor rigidez. De esta forma, en la determinación del valor característico de tracción paralela según el método ELU para ambas direcciones (ft,x,k y ft,y,k), se suele considerar que es un 20% superior a la resistencia paralela de un único tablón (ft,0,l,k)

      En la ecuación anterior se asume que ft,0,l,k tiene una covarianza de aproximadamente el 25%; en caso de que la covarianza fuese superior, la mayoración de carga compartida se incrementaría aún más. Para una madera de calidad C24, ft,x,k ≈16 N/mm2.

      Tracción paralela a las láminas externas

      Ver una ilustración de esta solicitación y la idealización de tensiones únicamente en A0,net en la Figura 1.4.1.2.

      FIGURA 1.4.1.2 Tracción paralela a las láminas externas e idealización de las tensiones axiales únicamente en A0,net (después de Wallner-Novak et al. 2013).

      Tracción perpendicular a las láminas externas

      Ver la solicitación e idealización de tensiones en la Figura 1.4.1.3.

      FIGURA 1.4.1.3 Tracción perpendicular a las láminas externas e idealización de las tensiones axiales únicamente en A0,net (después de Wallner-Novak et al. 2013).

      Tanto la normativa NDS como la europea consideran que esta resistencia es similar a la MLE; de hecho, en Europa se propone el mismo ensayo para su caracterización. En efecto, la resistencia a la tracción perpendicular debería de ser similar a la MLE, ya que independientemente de la orientación de las fibras en el plano, la tracción perpendicular