The Andromeda Galaxy is our nearest galactic neighbour, and our own Milky Way Galaxy is believed to look very much like it.
Located 5,000 light years away, the Lagoon Nebula is one of a handful of active star-forming regions in our galaxy that are visible from Earth with the naked eye.
NASA
A STAR IS BORN
Our sun is in the middle of its life cycle, but look out into the Milky Way and we can see the whole cycle of stellar life playing out. Roughly once a year a new light appears in our galaxy, as somewhere in the Milky Way a new star is born.
The Lagoon Nebula is one such star nursery; within this giant interstellar cloud of gas and dust, new stars are created. Discovered by French astronomer Guillaume Le Gentil in 1747, this is one of a handful of active star-forming regions in our galaxy that are visible with the naked eye. This huge cloud is slowly collapsing under its own gravity, but slightly denser regions gradually accrete more and more matter, and over time these clumps grow massive enough to turn into stars.
The centre of this vast stellar nursery, known as the Hourglass, is illuminated by an intriguing object known as Herschel 36. This star is thought to be a ‘ZAMS’ star (zero ago main sequence) because it has just begun to produce the dominant part of its energy from hydrogen fusion in its core. Recent measurements suggest that Herschel 36 may actually be three large young stars orbiting around each other, with the entire system having a combined mass of over fifty times that of our sun. This makes Herschel 36 a true system of giants. Eventually Herschel 36 and all the stars in the Milky Way will die, and when they do, many will go out in a blaze of glory.
Eta Carinae is a pair of billowing gas and dust clouds that are the remnants of a stellar explosion from an unstable star system. The system consists of at least two giant stars, and shines with a brightness four million times that of our sun. One of these stars is thought to be a Wolf-Rayet star. These stars are immense, over twenty times the mass of our sun, and are engaged in a constant struggle to hang onto their outer layers, losing vast amounts of mass every second in a powerful solar wind. In 1843, Eta Carinae became one of the brightest stars in the Universe when it exploded. The blast spat matter out at nearly 2.5 million kilometres (1.5 million miles) an hour, and was so bright that it was thought to be a supernova explosion. Eta Carinae survived intact and remains buried deep inside these clouds, but its days are numbered. Because of its immense mass, the Wolf-Rayet star is using up its hydrogen fuel at a ferocious rate. Within a few hundred thousand years, it is expected that the star will explode in a supernova or even a hypernova (the biggest explosion in the known Universe), although its fate may be sealed a lot sooner. In 2004, an explosion thought to be similar to the 1843 Eta Carinae event was seen in a galaxy over seventy million light years from the Milky Way. Just two years later, the star exploded as a supernova. Eta Carinae is very much closer – at a distance of only 7,500 light years – so as a supernova it may shine so brightly that it will be visible from Earth even in daylight.
Out in the Milky Way we can see the whole cycle of stellar life playing out. Roughly once a year a new light appears, as somewhere in the Milky Way a new star is born.
Eta Carinae is one of the most massive and visible stars in the night sky, but because of its mass it is also the most volatile and most likely to explode in the near future.
NASA
Seeing the light from these distant worlds and watching the life cycle of the Universe unfold is a breathtaking reminder that light is the ultimate messenger; carrying information about the wonders of the Universe to us across interstellar and intergalactic distances. But light does much more than just allow us to see these distant worlds; it allows us to journey back through time, providing a direct and real connection with our past. This seemingly impossible state of affairs is made possible not only because of the information carried by the light, but by the properties of light itself
Eventually all the stars in the Milky Way will die, many in spectacular explosions. Herschel 36 was formed from just such a stellar explosion, which occurred within the Eta Carinae system.
WHAT IS LIGHT?
If we aspire to understand the world around us, one of the most basic questions we must ask is about the nature of light. It is the primary way in which we observe our own planet, and the only way we will ever be able to explore the Universe beyond our galaxy. For now, even the stars are far beyond our reach, and we rely on their light alone for information about them. By the seventeenth century, many renowned scientists were studying the properties of light in detail, and parallel advances in engineering and science both provided deep insights and catalysed each other. The studies of Kepler, Galileo and Descartes, and some of the later true greats of physics – Huygens, Hooke and Newton – were all fuelled by the desire to build better lenses for microscopes and telescopes to enable them to explore the Universe on every scale, and to make great scientific discoveries and advances in the basic science itself.
YOUNG’S DOUBLE-SLIT EXPERIMENT
By the end of the seventeenth century, two competing theories for light had emerged – both of which are correct. On one side was Sir Isaac Newton, who believed that light was composed of particles – or ‘corpuscles’, as he called them in his Hypothesis of Light, published in 1675. On the other were Newton’s great scientific adversary, Robert Hooke, and the Dutch physicist and astronomer, Christiaan Huygens. The particle/wave debate rumbled on until the turn of the nineteenth century, with most physicists siding with Newton. There were some notable exceptions, including the great mathematician Leonhard Euler, who felt that the phenomena of diffraction could only be explained by a wave theory. In 1801, the English doctor Thomas Young appeared to settle the matter once and for all when he reported the results from his famous double-slit experiment, which clearly showed that light diffracted, and therefore must travel in the form of a wave.
Diffraction is a fascinating and beautiful phenomena that is very difficult to explain without waves. If you shine light onto a screen through a barrier with a very thin slit cut into it, you don’t see a bright light on the screen opposite the slit, but instead you see a complex but regular pattern of light and dark areas.
The explanation for this is that when you mix lots of waves together they don’t only have to add up. Imagine two waves on top of each other with exactly the same wavelength and wave height (technically known as the amplitude), but aligned precisely so that the peak of one wave lies directly on the trough of the other (in more technical language, we say that the waves are 180 degrees out of phase), and so the waves cancel each other out. If these waves were light waves you would get darkness! This is exactly what is seen in diffraction experiments