M87, also known as Virgo A and Messier 87, is a giant elliptical galaxy located 54 million light years away from Earth in the Virgo Cluster. In this image the central jet is visible, which is a powerful beam of hot gas produced by a massive black hole in the core of the galaxy.
NASA
ABOVE: Taken in December 2010, this is the most detailed picture of the Andromeda Galaxy, or M31, taken so far. It is our largest and closest spiral galaxy, and in this picture we can clearly see rings of new star formations developing.
TOP: This image of the galaxy M51 clearly shows how it got its other name: the Whirlpool Galaxy. The spiral shape of the galaxy is immediately obvious, with curving arms of pinky-red, star-forming regions and blue star clusters.
NASA
ABOVE: Zwicky 18 was once thought to be the youngest galaxy, as its bright stars suggested it was only 500 million years old. However, recent Hubble Space Telescope images have identified older stars within it, making the galaxy as old as others but with new star formations.
TOP: M33, also known as the Triangulum, or Pinwheel, Galaxy is the third-largest in the Local Group of galaxies after the Milky Way and Andromeda Galaxies, of which it is thought to be a satellite.
MAPPING THE MILKY WAY GALAXY
Our galaxy, the Milky Way, contains somewhere between 200 and 400 billion stars, depending on the number of faint dwarf stars that are difficult for us to detect. The majority of stars lie in a disc around 100,000 light years in diameter and, on average, around 1,000 light years thick. These vast distances are very difficult to visualise. A distance of 100,000 light years means that light itself, travelling at 300,000 kilometres (186,000 miles) per second, would take 100,000 years to make a journey across our galaxy. Or, to put it another way, the distance between the Sun and the outermost planet of our solar system, Neptune, is around four light hours – that’s one-sixth of a light day. You would have to lay around 220 million solar systems end to end to cross our galaxy.
At the centre of our galaxy, and possibly every galaxy in the Universe, there is believed to be a super-massive black hole. Astronomers believe this because of precise measurements of the orbit of a star known as S2. This star orbits around the intense source of radio waves known as Sagittarius A* (pronounced ‘Sagittarius A-star’) that sits at the galactic centre. S2’s orbital period is just over fifteen years, which makes it the fastest-known orbiting object, reaching speeds of up to 2 per cent of the speed of light. If the precise orbital path of an object is known, the mass of the thing it is orbiting around can be calculated, and the mass of Sagittarius A* is enormous, at 4.1 million times the mass of our sun. Since the star S2 has a closest approach to the object of only seventeen light hours, it is known that Saggitarus A* must be smaller than this, otherwise S2 would literally bump into it. The only known way of cramming 4.1 million times the mass of the Sun into a space less than 17 light hours across is as a black hole, which is why astronomers are so confident that a giant black hole sits at the centre of the Milky Way. These observations have recently been confirmed and refined by studying a further twenty-seven stars, known as the S-stars, all with orbits taking them very close to Sagittarius A*.
Beyond the S-stars, the galactic centre is a melting pot of celestial activity, filled with all sorts of different systems that interact and influence each other. The Arches Cluster is the densest known star cluster in the galaxy. Formed from about 150 young, intensely hot stars that dwarf our sun in size, these stars burn brightly and are consequently very short-lived, exhausting their supply of hydrogen in just a couple of million years. The Quintuplet Cluster contains one of the most luminous stars in our galaxy, the Pistol Star, which is thought to be near the end of its life and on the verge of becoming a supernova (see Chapter 2). It is in central clusters like the Arches and the Quintuplet that the greatest density of stars in our galaxy can be found. As we move out from the crowded galactic centre, the number of stars drops with distance, until we reach the sparse cloud of gas in the outer reaches of the Milky Way known as the Galactic Halo.
This artist’s impression shows the Arches Cluster, the densest known cluster of young stars in the Milky Way Galaxy.
NASA
Along with the Arches Cluster, the Quintuplet Cluster is located near the centre of the Milky Way Galaxy.
NASA
The bright white dot in the centre of this image is the Pistol Star, one of the brightest stars in our galaxy.
The distance between the Sun and the outermost planet of our solar system, Neptune, is around four light hours – that’s one-sixth of a light day. You would have to lay around 220 million solar systems end to end to cross our galaxy.
In 2007, scientists using the Very Large Telescope (VLT) at the Paranal Observatory in Chile were able to observe a star in the Galactic Halo that is thought to be the oldest object in the Milky Way. HE 1523-0901 is a star in the last stages of its life; known as a red giant, it is a vast structure far bigger than our sun, but much cooler at its surface. HE 1523-0901 is interesting because astronomers have been able to measure the precise quantities of five radioactive elements – uranium, thorium, europium, osmium and iridium – in the star. Using a technique very similar to carbon dating (a method archaeologists use to measure the age of organic material on Earth), astronomers have been able to get a precise age for this ancient star. Radioactive dating is an extremely precise and reliable technique when there are multiple ‘radioactive clocks’ ticking away at once. This is why the detection of five radioactive elements in the light from HE 1523-0901 was so important. This dying star turns out to be 13.2 billion years old – that’s almost as old as the Universe itself, which began just over 13.7 billion years ago. The radioactive elements in this star would have been created in the death throes of the first generation of stars, which ended their lives in supernova explosions in the first half a billion years of the life of the Universe (see Chapter 2)
THE SHAPE OF OUR GALAXY
As well as being vast and very, very old, our galaxy is also beautifully structured. Known as a barred spiral galaxy, it consists of a bar-shaped core surrounded by a disc of gas, dust and stars that creates individual spiral arms twisting out from the centre. Until very recently, it was thought that our galaxy contained only four spiral arms – Perseus, Norma, Scutum–Centaurus and Carina–Sagittarius, with our sun in an off shoot of the latter called the Orion spur – but there is now thought to be an additional arm, called the Outer arm, an extension to the Norma arm.
Close to the