Предсказываем тренды. С Rattle и R в мир моделей классификации. Александр Фоменко. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Фоменко
Издательство: Издательские решения
Серия:
Жанр произведения: Компьютеры: прочее
Год издания: 0
isbn: 9785449663054
Скачать книгу
подхода. Во-первых, так как квадраты остатков не используются, большие выбросы имеют ограниченное влияние на уравнение регрессии. Во-вторых, выборки, к которым хорошо подгоняется модель (то есть, остатки небольшие) не имеют никакого влияния на уравнение регрессии. Фактически, если порог установлен к относительно крупному значению, то выбросы – единственные точки, которые определяют линию регрессии! Это несколько парадоксально: плохо предсказанные точки определяют линию. Однако этот подход, как оказалось, очень эффективен при определении модели.

      4.3.3. К-ближайшие соседи

      Подход KNN просто предсказывает новую выборку, используя K самых близких точек из набора данных обучения. Построение KNN основано исключительно на отдельных выборках из учебных данных. Чтобы предсказать новую выборку для регрессии, KNN идентифицирует KNN выборки в пространстве предикторов. Предсказанный отклик для новой выборки – это средний из K откликов соседей. Другая итоговая статистика, такая как медиана, также может использоваться вместо средней для предсказания на новой выборке.

      Основной метод KNN зависит от того, как пользователь определяет расстояние между выборками. Евклидово расстояние (то есть, расстояние по прямой между двумя выборками) является обычно используемой метрикой.

      Поскольку метод KNN существенно зависит от расстояния между выборками, масштаб предикторов может иметь драматическое влияние на расстояния между выборками. Предикторы, которые имеют существенно разные веса, будут генерировать расстояния в виде нагрузок к предикторам, у которых есть самые большие весы. Таким образом, предикторы с самыми большими весами будут способствовать больше всего расстоянию между выборками. Чтобы избежать этого потенциального смещения и обеспечить каждому предиктору одинаковый вклад в вычисленное расстояние, рекомендуется центрировать и масштабировать все предикторы до выполнения KNN.

      В дополнение к проблеме масштабирования, может быть проблематичным использование расстояния между наблюдениями, если пропущены некоторые значения предиктора, так как в этом случае невозможно вычислить расстояние между наблюдениями.

      Элементарная версия KNN интуитивно ясная и может произвести приличные предсказания, особенно если целевая переменная зависит от локальной структуры предиктора. Однако в действительности у этой версии есть некоторые известные проблемы. Две обычно отмечаемых проблемы – время вычислений и разъединение между локальной структурой и предсказательной возможностью KNN.

      Во-первых, для предсказания целевой переменной следует вычислить расстояния между наблюдением и всеми другими наблюдениями. Поэтому время вычисления увеличивается с n, что требует предварительной загрузки всех учебных данных в память для обеспечения возможности вычисления расстояния между новым наблюдением и всеми учебными наблюдениями.

      У метода