Предсказываем тренды. С Rattle и R в мир моделей классификации. Александр Фоменко. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Фоменко
Издательство: Издательские решения
Серия:
Жанр произведения: Компьютеры: прочее
Год издания: 0
isbn: 9785449663054
Скачать книгу
ошибок может произвести чрезвычайно оптимистические оценки результативности. Лучшим является подход, который проверяет модель на выборках, не использованных для обучения.

      Оценивая модель на тестовом наборе, размер набора тестов, возможно, должен быть большим.

      Альтернативный подход к оценке модели на единственном тестовом наборе состоит в ресемплирования набора данных обучения. Этот процесс использует несколько измененных версий набора данных обучения, чтобы создать многоуровневые модели и затем использует статистические методы, чтобы обеспечить честные оценки результативности модели (то есть, не чрезмерно оптимистичные).

      3.3. Разделение данных

      Теперь, когда мы обрисовали в общих чертах процедуру для поиска оптимальных настраиваемых параметров, вернемся к обсуждению основы процесса: разделение данных.

      Несколько общих шагов в создании модели:

      – предварительная обработка данных предиктора;

      – оценка параметров модели;

      – выбор предикторов для модели;

      – оценка результативности модели;

      – правила предсказания класса точной настройки (через кривые ROC, и т.д.).

      Одно из первых решений при моделировании, которое следует принять, какие наборы данных или их части будут использоваться для оценки результативности. Идеально, модель должна быть оценена на выборках, которые не использовались при создании или построении модели, так, чтобы они обеспечили несмещенную оценку эффективности модели. «Учебный» набор данных – общий термин для наблюдений, используемых для создания модели, в то время как набор данных «теста» или «проверки» используется для определения результативности.

      Из литературы известно, что проверка, использующая единственный набор, может дать плохое решение. Могут использоваться методы ресемплирования, такие как кросс-проверка, для соответствующей оценки результативности модели, используя набор данных обучения. Хотя методы ресемплирования могут быть неправильно употреблены, они часто оценивают результативность точнее единственного набора, потому что они оценивают много вариантов данных. Если тестовый набор считается необходимым, то есть несколько методов для разделения выборки.

      В большинстве случаев желательно сделать наборы данных обучения и набор данных тестирования настолько гомогенными насколько возможно. Можно использовать методы случайных выборок для создания подобных наборов данных.

      Самый простой способ разделить данные на набор данных обучения и тестовый набор состоит в том, чтобы взять простую случайную выборку. Это можно делать, если известно, что отношения классов примерно равны в обучающей и тестовой выборке. Когда у одного класса есть непропорционально большая частота по сравнению с другим, есть шанс, что распределение результатов может существенно отличаться между наборами данных обучения и тестовым