93 93 Colazzo, M., Pareja, L., Cesio, M.V., and Heinzen, H. (2018). Multi-residue method for trace pesticide analysis in soils by LC-QQQ-MS/MS and its application to real samples. Int. J. Environ. Anal. Chem. 98: 1292–1308. doi: 10.1080/03067319.2018.1551530.
94 94 Martínez Vidal, J.L., Padilla Sánchez, J.A., Plaza-Bolaños, P., Garrido Frenich, A., and Romero-González, R. (2010). Use of pressurized liquid extraction for the simultaneous analysis of 28 polar and 94 non-polar pesticides in agricultural soils by GC/QqQ-MS/MS and UPLC/QqQ-MS/MS. J. AOAC Int. 93: 1715–1731. doi: 10.1093/jaoac/93.6.1715.
95 95 Homazava, N., Gachet Aquillon, C., Vermeirssen, E., and Werner, I. (2014). Simultaneous multi-residue pesticide analysis in soil samples with ultra-high-performance liquid chromatography–tandem mass spectrometry using QuEChERS and pressurised liquid extraction methods. Int. J. Environ. Anal. Chem. 94: 1085–1099. doi: 10.1080/03067319.2014.954558.
96 96 Pérez-Mayán, L., Ramil, M., Cela, R., and Rodríguez, I. (2020). Multiresidue procedure to assess the occurrence and dissipation of fungicides and insecticides in vineyard soils from Northwest Spain. Chemosphere 261: 127696. doi: 10.1016/j.chemosphere.2020.127696.
97 97 Wu, X., Dong, F., Xu, J., Liu, X., Wu, X., and Zheng, Y. (2020). Enantioselective separation and dissipation of pydiflumetofen enantiomers in grape and soil by supercritical fluid chromatography–tandem mass spectrometry. J. Sep. Sci. 43: 2217–2227. doi: 10.1002/jssc.201901332.
98 98 Hou, X., Qiao, T., Zhao, Y., and Liu, D. (2019). Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field. Ecotoxicol. Environ. Saf. 180: 227–233. doi: 10.1016/j.ecoenv.2019.04.089.
99 99 Acosta-Dacal, A., Rial-Berriel, C., Díaz-Díaz, R., Bernal-Suárez, M.M., and Luzardo, O.P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ. 753: 142015. doi: 10.1016/j.scitotenv.2020.142015.
100 100 Chen, K., Li, S., Hu, M., Xu, J., Wu, X., Dong, F., Zheng, Y., and Liu, X. (2017). Dissipation dynamics of fenamidone and propamocarb hydrochloride in pepper, soil and residue analysis in vegetables by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Int. J. Environ. Anal. Chem. 97: 134–144. doi: 10.1080/03067319.2017.1291807.
101 101 Ismail, N.A.H., Wee, S.Y., and Aris, A.Z. (2017). Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 188: 375–388. doi: 10.1016/j.chemosphere.2017.08.150.
102 102 Egea Gonzalez, F.J., Mena Granero, A., Glass, C.R., Garrido Frenich, A., and Martinez Vidal, J.L. (2004). Screening method for pesticides in air by gas chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18: 537–543. doi: 10.1002/rcm.1359.
103 103 Van Ael, E., Covaci, A., Blust, R., and Bervoets, L. (2012). Persistent organic pollutants in the Scheldt estuary: environmental distribution and bioaccumulation. Environ. Int. 48: 17–27. doi: 10.1016/j.envint.2012.06.017.
104 104 Miyawaki, T., Tobiishi, K., Takenaka, S., and Kadokami, K. (2018). A rapid method, combining microwave-assisted extraction and gas chromatography-mass spectrometry with a database, for determining organochlorine pesticides and polycyclic aromatic hydrocarbons in soils and sediments. Soil Sediment Contam. 27: 31–45. doi: 10.1080/15320383.2017.1360245.
105 105 Zhao, X., Cui, T., Guo, R., Liu, Y., Wang, X., An, Y., Qiao, X., and Zheng, B. (2019). A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Anal. Chim. Acta 1047: 71–80. doi: 10.1016/j.aca.2018.10.011.
106 106 Mesquita, T.C.R., Santos, R.R., Cacique, A.P., De Sá, L.J., Silvério, F.O., and Pinho, G.P. (2018). Easy and fast extraction methods to determine organochlorine pesticides in sewage sludge, soil, and water samples based at low temperature. J. Environ. Sci. Heal. – Part B Pestic. Food Contam. Agric. Wastes. 53: 199–206. doi: 10.1080/03601234.2017.1405626.
107 107 Belmonte Vega, A., Garrido Frenich, A., and Martínez Vidal, J.L. (2005). Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Anal. Chim. Acta 538: 117–127. doi: 10.1016/j.aca.2005.02.003.
108 108 Knoll, S., Rösch, T., and Huhn, C. (2020). Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal. Bioanal. Chem. 412: 6149–6165. doi: 10.1007/s00216-020-02811-5.
109 109 Deng, H., Ji, Y., Tang, S., Yang, F., Tang, G., Shi, H., and Kee Lee, H. (2020). Application of chiral and achiral supercritical fluid chromatography in pesticide analysis: a review. J. Chromatogr. A 1634: 461684. doi: 10.1016/j.chroma.2020.461684.
110 110 Bieber, S., Greco, G., Grosse, S., and Letzel, T. (2017). RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal. Chem. 89: 7907–7914. doi: 10.1021/acs.analchem.7b00859.
111 111 Salvatierra-Stamp, V.D.C., Ceballos-Magaña, S.G., Gonzalez, J., Ibarra-Galván, V., and Muñiz-Valencia, R. (2015). Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal. Bioanal. Chem. 407: 4219–4226. doi: 10.1007/s00216-015-8581-x.