56 56 Coscollà, C., León, N., Pastor, A., and Yusà, V. (2014). Combined target and post-run target strategy for a comprehensive analysis of pesticides in ambient air using liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. A 1368: 132–142. doi: 10.1016/j.chroma.2014.09.067.
57 57 Coscollá, C., Hart, E., Pastor, A., and Yusà, V. (2013). LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. Atmos. Environ. 77: 394–403. doi: 10.1016/j.atmosenv.2013.05.022.
58 58 Nascimento, M.M., Da Rocha, G.O., and De Andrade, J.B. (2017). Pesticides in fine airborne particles: from a green analysis method to atmospheric characterization and risk assessment. Sci. Rep. 7: 1–11. doi: 10.1038/s41598-017-02518-1.
59 59 Pinasseau, L., Wiest, L., Volatier, L., Mermillod-Blondin, F., and Vulliet, E. (2020). Emerging polar pollutants in groundwater: potential impact of urban stormwater infiltration practices. Environ. Pollut. 266: 115387. doi: 10.1016/j.envpol.2020.115387.
60 60 Vrana, B., Smedes, F., Prokeš, R., Loos, R., Mazzella, N., Miege, C., Budzinski, H., Vermeirssen, E., Ocelka, T., Gravell, A., and Kaserzon, S. (2016). An interlaboratory study on passive sampling of emerging water pollutants. Trends Anal. Chem. 76: 153–165. doi: 10.1016/j.trac.2015.10.013.
61 61 Yu, Y., Liu, X., He, Z., Wang, L., Luo, M., Peng, Y., and Zhou, Q. (2016). Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 8: 2463–2470. doi: 10.1039/c6ay00337k.
62 62 Gerónimo, E., Botero-Coy, A.M., Marín, J.M., Aparicio, V.C., Costa, J.L., Sancho, J.V., and Hernández, F. (2015). A simple and rapid analytical methodology based on liquid chromatography-tandem mass spectrometry for monitoring pesticide residues in soils from Argentina. Anal. Methods. 7: 9504–9512. doi: 10.1039/c5ay01582k.
63 63 Hu, J.Y., Zhen, Z.H., and Deng, Z.B. (2011). Simultaneous determination of acetochlor and propisochlor residues in corn and soil by solid phase extraction and gas chromatography with electron capture detection. Bull. Environ. Contam. Toxicol. 86: 95–100. doi: 10.1007/s00128-010-0130-x.
64 64 Bragança, I., Lemos, P.C., Delerue-Matos, C., and Domingues, V.F. (2019). Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils. Environ. Sci. Pollut. Res. 26: 2987–2997. doi: 10.1007/s11356-018-3690-7.
65 65 Zhao, P., Zhao, J., Lei, S., Guo, X., and Zhao, L. (2018). Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry. Chemosphere 204: 210–219. doi: 10.1016/j.chemosphere.2018.03.204.
66 66 Sørensen, L., Silva, M.S., Meier, S., and Booth, A.M. (2015). Advances in miniaturization and increasing sensitivity in analysis of organic contaminants in marine biota samples. Trends Environ. Anal. Chem. 6–7: 39–47. doi: 10.1016/j.teac.2015.03.001.
67 67 Lundqvist, J., Von Brömssen, C., Rosenmai, A.K., Ohlsson, A., Le Godec, T., Jonsson, O., Kreuger, J., and Oskarsson, A. (2019). Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environ. Sci. Eur. 31: 53. doi: 10.1186/s12302-019-0241-x.
68 68 Hashmi, T.A., Qureshi, R., Tipre, D., and Menon, S. (2019). Investigation of pesticide residues in water, sediments and fish samples from Tapi River, India as a case study and its forensic significance. Environ. Forensics. 21: 1–10. doi: 10.1080/15275922.2019.1693441.
69 69 Ruiz-Gil, L., Romero-González, R., Garrido Frenich, A., and Martínez Vidal, J.L. (2008). Determination of pesticides in water samples by solid phase extraction and gas chromatography tandem mass spectrometry. J. Sep. Sci. 31: 151–161. doi: 10.1002/jssc.200700299.
70 70 Xie, H., Chen, J., Huang, Y., Zhang, R., Chen, C.E., Li, X., and Kadokami, K. (2020). Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: occurrence, distribution, and ecological risk. Environ. Pollut. 267: 115436. doi: 10.1016/j.envpol.2020.115436.
71 71 Wan, Y., Tran, T.M., Nguyen, V.T., Wang, A., Wang, J., and Kannan, K. (2021). Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci. Total Environ. 750: 141507. doi: 10.1016/j.scitotenv.2020.141507.
72 72 Fauvelle, V., Mazzella, N., Morin, S., Moreira, S., Delest, B., and Budzinski, H. (2015). Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water. Environ. Sci. Pollut. Res. 22: 3988–3996. doi: 10.1007/s11356-014-2876-x.
73 73 Tan, B., Xiong, J., Li, H., and You, J. (2020). Simultaneous analysis of current‐use pesticides and their transformation products in water using mixture‐sorbent solid phase extraction and high‐performance liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 43: 2409–2418. doi: 10.1002/jssc.202000115.
74 74Čelić, M., Jaén-Gil, A., Briceño-Guevara, S., Rodríguez-Mozaz, S., Gros, M., and Petrovic, M. (2021). Extended suspect screening to identify contaminants of emerging concern