75 75 Schulze, T., Ahel, M., Ahlheim, J., Ait-Aissa, S., Brion, F., Di Paolo, C., Froment, J., Hidasi, A.O., Hollender, J., Hollert, H., Hu, M., Klob, A., Koprivica, S., Krauss, M., Muz, M., Oswald, P., Petre, M., Schollée, J.E., Seiler, T.B., Shao, Y., Slobodnik, J., Sonavane, M., Suter, M.J.F., Tollefsen, K.E., Tousova, Z., Walz, J.H., and Brack, W. (2017). Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Sci. Total Environ. 581–582: 350–358. doi: 10.1016/j.scitotenv.2016.12.140.
76 76 Hurtado-Sánchez, M.C., Romero-González, R., Rodríguez-Cáceres, M.I., Durán-Merás, I., and Garrido Frenich, A. (2013). Rapid and sensitive on-line solid phase extraction ultra-high-performance liquid chromatography-electrospray-tandem mass spectrometry analysis of pesticides in surface waters. J. Chromatogr. A 1305: 193–202. doi: 10.1016/j.chroma.2013.07.045.
77 77 Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., Cal, A., Boleda, M.R., Otero, N., Carrey, R., Solà, V., Queralt, E., Isla, E., Casanovas, A., Frances, G., and López de Alda, M. (2021). Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: the lower Llobregat River basin case study (Barcelona, Spain). Sci. Total Environ. 755: 142377. doi: 10.1016/j.scitotenv.2020.142377.
78 78 Barbieri, M.V., Monllor-Alcaraz, L.S., Postigo, C., and López de Alda, M. (2020). Improved fully automated method for the determination of medium to highly polar pesticides in surface and groundwater and application in two distinct agriculture-impacted areas. Sci. Total Environ. 745: 140650. doi: 10.1016/j.scitotenv.2020.140650.
79 79 Domínguez, I., Romero-González, R., Arrebola Liébanas, F.J., Martínez Vidal, J.L., and Garrido Frenich, A. (2016). Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends Environ. Anal. Chem. 12: 1–12. doi: 10.1016/j.teac.2016.09.001.
80 80 Abdel Ghani, S.B. and Hanafi, A.H. (2016). QuEChERS method combined with GC‒MS for pesticide residues determination in water. J. Anal. Chem. 71: 508–512. doi: 10.1134/S1061934816050117.
81 81 Garrido Frenich, A., Romero-González, R., Martínez Vidal, J.L., Martínez Ocaña, R., and Baquero Feria, P. (2011). Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry. Anal. Bioanal. Chem. 399: 2043–2059. doi: 10.1007/s00216-010-4236-0.
82 82 Menezes, H.C., Paulo, B.P., Paiva, M.J.N., and Cardeal, Z.L. (2016). A simple and quick method for the determination of pesticides in environmental water by HF-LPME-GC/MS. J. Anal. Methods Chem. 2016: 1–11. doi: 10.1155/2016/7058709.
83 83 Tankiewicz, M., Fenik, J., and Biziuk, M. (2011). Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86: 8–22. doi: 10.1016/j.talanta.2011.08.056.
84 84 Domínguez, I., Arrebola, F.J., Romero-González, R., Nieto-García, A., Martínez Vidal, J.L., and Garrido Frenich, A. (2017). Solid phase microextraction and gas chromatography coupled to magnetic sector high resolution mass spectrometry for the ultra-trace determination of contaminants in surface water. J. Chromatogr. A 1518: 15–24. doi: 10.1016/j.chroma.2017.08.061.
85 85 Domínguez, I., Arrebola, F.J., Gavara, R., Martínez Vidal, J.L., and Garrido Frenich, A. (2018). Automated and simultaneous determination of priority substances and polychlorinated biphenyls in wastewater using headspace solid phase microextraction and high resolution mass spectrometry. Anal. Chim. Acta 1002: 39–49. doi: 10.1016/j.aca.2017.11.056.
86 86 Jamshidi, F., Nouri, N., Sereshti, H., and Aliabadi, M.H.S. (2020). Synthesis of magnetic poly (acrylic acid-menthol deep eutectic solvent) hydrogel: application for extraction of pesticides. J. Mol. Liq. 318: 114073. doi: 10.1016/j.molliq.2020.114073.
87 87 Valenzuela, E.F., de Paula, F.G.F., Teixeira, A.P.C., Menezes, H.C., and Cardeal, Z.L. (2020). A new carbon nanomaterial solid-phase microextraction to pre-concentrate and extract pesticides in environmental water. Talanta 217: 121011. doi: 10.1016/j.talanta.2020.121011.
88 88 Zhao, P., Wang, Z., Li, K., Guo, X., and Zhao, L. (2018). Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 1568: 8–21. doi: 10.1016/j.chroma.2018.07.022.
89 89 Mechelke, J., Longrée, P., Singer, H., and Hollender, J. (2019). Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal. Bioanal. Chem. 2555–2567. doi: 10.1007/s00216-019-01696-3.
90 90 Kiefer, K., Bader, T., Minas, N., Salhi, E., Janssen, E.M.L., Von Gunten, U., and Hollender, J. (2020). Chlorothalonil transformation products in drinking water resources: widespread and challenging to abate. Water Res. 183: 116066. doi: 10.1016/j.watres.2020.116066.
91 91 Reemtsma, T., Alder, L., and Banasiak, U. (2013). A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J. Chromatogr. A 1271: 95–104. doi: 10.1016/j.chroma.2012.11.023.
92 92 Dagnac, T., Jeannot, R., Mouvet, C., and Baran, N. (2002). Determination of oxanilic and sulfonic acid metabolites of