15 15 Revenko, A.G. and Sharykina, D.S. (2019). The application of X‐ray fluorescence analysis to research the chemical compositions of tea and coffee samples. Anal. Control 23 (1): 6–23. (in Russian).
16 16 Maltsev, A.S., von Bohlen, A., Yusupov, R.A., and Bakhteev, S.A. (2019). Evaluation of analytical capabilities of total reflection X‐ray fluorescence spectrometry for the analysis of drinks with sucrose matrix. Anal. Control 23 (4): 483–493.
17 17 Pashkova, G.V. (2009). X‐ray fluorescence determination of element contents in milk and dairy products. Food Anal. Methods 2: 303–310.
18 18 Pashkova, G.V., Smagunova, A.N., and Finkelshtein, A.L. (2018). X‐ray fluorescence analysis of milk and dairy products: a review. Tr. Anal. Chem. 106: 183–189.
19 19 McLeod, R.J., Garland, M., Hale, R.V. et al. (2013). Determining the most effective combination of chemical parameters for differentiating the geographic origin of food products: an example using coffee beans. J. Food Chem. Nutr. 01 (02): 49–61.
20 20 Marcos, A., Fisher, A., Rea, G., and Hill, S.J. (1998). Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom 13 (6): 521–525.
21 21 Fernández‐Cáceres, P.L., Martín, M.J., Pablos, F., and González, A.G. (2001). Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J. Agric. Food Chem. 49 (10): 4775–4779.
22 22 Haytowitz, D.B., Pehrsson, P.R., and Holden, J.M. (2002). The identification of key foods for food composition research. J. Food Compos. Anal. 15 (2): 183–194.
23 23 Gonzalvez, A., Armenta, S., and De La Guardia, M. (2009). Trace‐element composition and stable‐isotope ratio for discrimination of foods with protected designation of origin. Tr. Anal. Chem. 28 (11): 1295–1311.
24 24 Armenta, S. and de la Guardia, M. (2016). Analytical approaches for the evaluation of food protected designation of origin. Eds. M. Espineira and F. Santaclara. In: Advances in Food Traceability Techniques and Technologies, 275–301. Woodhead Publishing.
25 25 Kamiloglu, S. (2019). Authenticity and traceability in beverages. Food Chem. 277: 12–24.
26 26 Worku, M., Upadhayay, H.R., and Latruwe, K. (2019). Differentiating the geographical origin of Ethiopian coffee using XRF‐ and ICP‐based multi‐element and stable isotope profiling. Food Chem. 290: 295–307.
27 27 Callao, M.P. and Ruisánchez, I. (2018). An overview of multivariate qualitative methods for food fraud detection. Food Control 86: 283–293.
28 28 Cloete, K.J., Smit, Z., Minnis‐Ndimba, R. et al. (2019). Physico‐elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X‐ray micro‐computed tomography and external beam particle induced X‐ray emission. Food Chem. X 2: 100032.
29 29 Pereira, F.M.V., Pereira‐Filho, E.R., Rodriques, E., and Bueno, M.I.M.S. (2006). Development of a methodology for Ca, Fe, K, Mg, Mn, and Zn quantification in teas using X‐ray spectroscopy and multivariate calibration. J. Agric. Food Chem. 54: 5723–5730.
30 30 Karak, T. and Bhagat, R.M. (2010). Trace elements in tea leaves, made tea and tea infusion: a review. Food Res. Int. 43 (9): 2234–2252.
31 31 Karak, T., Kutu, F.R., Nath, J.R. et al. (2017). Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: a critical review. Crit. Rev. Food Sci. Nutr. 57 (14): 2996–3034.
32 32 Kumakhov, M.A. (2000). Capillary optics and their use in x‐ray analysis. X‐Ray Spectrom. 29 (5): 343–348.
33 33 Beckhoff, B., Kanngießer, B., Langhoff, N. et al. (2006). Handbook of Practical X‐Ray Fluorescence Analysis. Springer Science & Business Media.
34 34 Revenko, A.G. (2007). Specific features of X‐ray fluorescence analysis techniques using capillary lenses and synchrotron radiation. Spectrochim. Acta A 62B (6–7): 567–576.
35 35 Yonehara, T., Orita, D., Nakano, K. et al. (2010). Development of a transportable μ‐XRF spectrometer with polycapillary half lens. X‐Ray Spectrom. 39 (2): 78–82.
36 36 Haschke, M. (2014). Laboratory Micro‐X‐Ray Fluorescence Spectroscopy, vol. 55. Springer.
37 37 Szoboszlai, N., Polgári, Z., Mihucz, V.G., and Záray, G. (2009). Recent trends in total reflection X‐ray fluorescence spectrometry for biological applications. Anal. Chim. Acta 633 (1): 1–18.
38 38 Revenko, A.G. (2010). The special features of analytical techniques for geological samples using TXRF spectrometers. Anal. Control 14 (2): 42–64. (in Russian).
39 39 Klockenkämper, R. and von Bohlen, A. (2015). Total‐Reflection X‐Ray Fluorescence Analysis and Related Methods, 2e. New Jersey: Wiley.
40 40 Kawai, J. (2018). Total reflection X‐ray fluorescence. Nark F. Vitha, Series Editor In: Compendium of Surface and Interface Analysis, 763–768. Singapore: Springer.
41 41 Heckel, J., Brumme, M., Weinert, A., and Irmer, K. (1991). Multi‐element trace analysis of rocks and soils by EDXRF using polarized radiation. X‐Ray Spectrom. 20 (6): 287–292.
42 42 Revenko, A.G. (1994). X‐Ray Spectral Fluorescence Analysis of Natural Materials. Novosibirsk: Nauka Publishers (In Russian).
43 43 Margui, E., Padilla, R., Hidalgo et al. (2006). High‐energy polarized‐beam EDXRF for trace metal analysis of vegetation samples in environmental studies. X‐Ray Spectrom. 35 (3): 169–177.
44 44 Hepp, N.M. and James, I.C. (2016). Application of high‐energy polarized energy‐dispersive x‐ray fluorescence spectrometry to the determination of trace levels of As, Hg, and Pb in certifiable color additives. X‐Ray Spectrom. 45 (6): 330–338.
45 45 Palmer, P.T., Jacobs, R., Baker, P.E. et al. (2009). Use of field‐portable XRF analyzers for rapid screening of toxic elements in FDA‐regulated products. J. Agric. Food Chem. 57: 2605–2613.
46 46 Willis, J., Feather, C., and Turner, K. (2014). Guidelines for XRF analysis. Setting up programmes for WDXRF and EDXRF. Cape Town, South Africa: James Willis Consultants cc.
47 47 Fleming, D.E.B., Foran, K.A., Kim, J.S., and Guernsey, J.R. (2015). Portable x‐ray fluorescence for assessing trace elements in rice and rice products: comparison with inductively coupled plasma‐mass spectrometry. Appl. Radiat. Isot. 104: 217–223.
48 48 Towett, E.K., Shepherd, K.D., and Drake, B.L. (2016). Plant elemental composition and portable X‐ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X‐Ray Spectrom. 45 (2): 117–124.
49 49 Ridolfi, S. (2017). Portable Systems for Energy‐Dispersive X‐Ray Fluorescence Analysis. Encyclopedia of Analytical Chemistry. Wiley.
50 50 Revenko, A.G. (1994a). Preparation of samples of natural materials for energy dispersive X‐ray fluorescence analysis. Industrial Lab. Diagn. ‐Mater. 60 (11): 16–29. (in Russian).
51 51 Garivait, S., Quisefit, J.P., de Chateaubourg, P., and Malingre, G. (1997). Multi‐element analysis of plants by WDXRF using the scattered radiation correction method. X‐Ray Spectrom. 26 (5): 257–264.
52 52 Chen, Y., Guo, Z., Wang, X., and Qiu, C. (2008). Sample preparation. Review. J. Chromatogr. A 1184: 191–219.
53 53 Margui, E., Queralt, I., and Van Grieken, R. (2016). Sample preparation for X‐ray fluorescence analysis. R.A. Meyers (Ed.) In: Encyclopedia of Analytical Chemistry. Wiley 25 p.
54 54 Welna, M., Szymczycha‐Madeja, A., and Pohl, P. (2013). A comparison of samples preparation strategies in the multi‐elemental analysis of tea by spectrometric methods. Food Res. Int. 53 (2): 922–930.
55 55 Gunicheva, T.N. and Chuparina, E.V. (2002). Effect of aging reference standard material radiators under direct X‐ray fluorescence analysis of plant materials. Anal. Control 6 (5): 557–565. (in Russian).
56 56 Anjos,