111 Kelley, K. A., & Cottrell, E. (2009). Water and the oxidation state of subduction zone magmas. Science, 325(5940), 605–607. doi: 10.1126/science.1174156
112 Kelley, K. A., & Cottrell, E. (2012). The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329, 109–121. doi: 10.1016/j.epsl.2012.02.010
113 Kennedy, G. C. (1955). Some aspects of the role of water in rock melts. Geological Society of America Special Paper, 62, 489–504.
114 Klimm, K., Kohn, S. C., O'Dell, L. A., Botcharnikov, R. E., & Smith, M. E. (2012). The dissolution mechanism of sulphur in hydrous silicate melts. I: Assessment of analytical techniques in determining the sulphur speciation in iron‐free to iron‐poor glasses. Chemical Geology, 322–323, 237–249. doi: 10.1016/j.chemgeo.2012.04.027
115 Kress, V. C., & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82–92.
116 Krzywinski, M., & Altman, N. (2013). Significance, P values and t‐tests. Nature Methods, 10(11), 1041–1042. doi: 10.1038/nmeth.2698
117 Kushiro, I. (1972). Effect of water on composition of magmas formed at high pressures. Journal of Petrology, 13(2), 311–334.
118 Kyser, T. K., O'Neil, J. R., & Carmichael, I. S. E. (1981). Oxygen isotope thermometry of basic lavas and mantle nodules. Contributions to Mineralogy and Petrology, 77(1), 11–23.
119 Larsen, J. F. (2006). Rhyodacite magma storage conditions prior to the 3430 yBP caldera‐forming eruption of Aniakchak volcano, Alaska. Contributions to Mineralogy and Petrology, 152(4), 523–540. doi: 10.1007/s00410‐006‐0121‐4
120 Laubier, M., Grove, T. L., & Langmuir, C. H. (2014). Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP‐MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392, 265–278. doi: 10.1016/j.epsl.2014.01.053
121 Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M., & Hauri, E. H. (2015). The effect of primary versus secondary processes on the volatile content of MORB glasses: An example from the equatorial Mid‐Atlantic Ridge (5° N–3° S). Journal of Geophysical Research: Solid Earth, 120(1), 125–144.
122 Le Voyer, M., Hauri, E. H., Cottrell, E., Kelley, K. A., Salters, V. J. M., Langmuir, C. H., et al. (2018). Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochemistry, Geophysics, Geosystems, 20(3), 1387–1424. doi: 10.1029/2018GC007630
123 Lecuyer, C., & Ricard, Y. (1999). Long‐term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth and Planetary Science Letters, 165(2), 197–211.
124 Lee, C.‐T., Brandon, A. D., & Norman, M. (2003). Vanadium in peridotites as a proxy for paleo‐fO(2) during partial melting: Prospects, limitations, and implications. Geochimica Et Cosmochimica Acta, 67(16), 3045–3064.
125 Lee, C.‐T., Leeman, W. P., Canil, D., & Li, Z.‐X. A. (2005). Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology, 46(11), 2313–2336. doi: 10.1093/petrology/egi056
126 Lee, C.‐T. A., Lee, T. C., & Wu, C.‐T. (2013). Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochimica et Cosmochimica Acta, 143, 8–22. doi: 10.1016/j.gca.2013.08.009.
127 Lee, C.‐T. A., Luffi, P., Le Roux, V., Dasgupta, R., Albarede, F., & Leeman, W. P. (2010). The redox state of arc mantle using Zn/Fe systematics. Nature, 468(7324), 681–685.
128 Lee, C. T. A., Luffi, P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D. M., et al. (2012). Copper systematics in arc magmas and implications for crust‐mantle differentiation. Science, 336(6077), 64–68. doi: 10.1126/science.1217313
129 Levin, V., Park, J., Brandon, M., Lees, J., Peyton, V., Gordeev, E., & Ozerov, A. (2002). Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics, 358(1–4), 233–265. doi: 10.1016/s0040‐1951(02)00426‐2
130 Li, J., Kornprobst, J., Vielzeuf, D., & Fabriès, J. (1995). An improved experimental calibration of the olivine‐spinel geothermometer. Chinese Journal of Geochemistry, 14(1), 68–77.
131 Luhr, J. F. (2000). The geology and petrology of Volcán San Juan (Nayarit, México) and the compositionally zoned Tepic Pumice. Journal of Volcanology and Geothermal Research, 95, 109–156.
132 Luhr, J. F., & Carmichael, I. S. E. (1980). The Colima Volcanic complex, Mexico: I. Post‐caldera andesite from Volcán Colima. Contributions to Mineralogy and Petrology, 71, 343–372.
133 Mallmann, G., & O'Neill, H. S. C. (2007). The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta, 71(11), 2837–2857. doi: 10.1016/j.gca.2007.03.028
134 Mallmann, G., & O'Neill, H. S. C. (2009). The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9), 1765–1794. doi: 10.1093/petrology/egp053
135 Mallmann, G., & O'Neill, H. S. (2013). Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. Journal of Petrology, 54(5), 933–949. doi: 10.1093/petrology/egt001
136 Mallmann, G., Burnham, A., & Fonseca, R. O. (2021). Mineral‐melt partitioning of redox‐sensitive elements. In: Neuville, D. R., Moretti, R. (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.
137 Manalo, P. C., Dirnalanta, C.B., Faustino‐Eslava, D. V., Ramos, N. T., Queano, K. L., & Yumul, G. P. (2015). Crustal thickness variation from a continental to an island arc terrane: Clues from the gravity signatures of the Central Philippines. Journal of Asian Earth Sciences, 104, 205–214. doi: 10.1016/j.jseaes.2014.08.031
138 Mandeville, C. W., Carey, S., & Sigurdsson, H. (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and Geothermal Research, 74(3–4), 243–274.
139 Mazzullo, L. J., & Bence, A. (1976). Abyssal tholeiites from DSDP Leg 34: the Nazca plate. Journal of Geophysical Research, 81(23), 4327–4351.
140 McGlashan, N., Brown, L., & Kay, S. M. (2008). Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophysical Journal International, 175(3), 1013–1022. doi: 10.1111/j.1365‐246X.2008.03897.x
141 McKenzie, D., & Onions, R. K. (1983). Mantle reservoirs and ocean island basalts. Nature, 301(5897), 229–231.
142 Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite‐frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11). doi: 10.1029/2006gc001248
143 Moussallam, Y., Edmonds, M., Scaillet, B., Peters, N., Gennaro, E., Sides, I., & Oppenheimer, C. (2016). The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano. Earth and Planetary Science Letters, 450, 317–325.
144 Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., et al. (2014). Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth and Planetary Science Letters, 393, 200–209.
145 Moussallam, Y., Longpré, M.‐A., McCammon, C., Gomez‐Ulla, A., Rose‐Koga, E. F., Scaillet,