Magma Redox Geochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119473244
Скачать книгу
Geology, 18, 1011–1013.

      37 Canil, D. (1997). Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389(6653), 842–845.

      38 Canil, D. (2002). Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth and Planetary Science Letters, 195(1–2), 75–90.

      39 Canil, D., & Fellows, S. A. (2017). Sulphide–sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time. Earth and Planetary Science Letters, 470, 73–86. doi: 10.1016/j.epsl.2017.04.028

      40 Carmichael, I. S. E. (1967). The mineralogy of thingmuli, a tertiary volcano in Eastern Iceland. American Mineralogist, 52, 1815–1841.

      41 Carmichael, I. S. E. (1991). The redox states of basic and silicic magmas ‐ a reflection of their source regions. Contributions to Mineralogy and Petrology, 106(2), 129–141.

      42 Carmichael, I. S. E., & Nicholls, J. (1967). Iron‐titanium oxides and oxygen fugacities in volcanic rocks. Journal of Geophysical Research, 72(18), 4665–4687.

      43 Carmichael, I. S. E., & Ghiorso, M. S. (1986). Oxidation‐reduction relations in basic magma ‐ a case for homogeneous equilibria. Earth and Planetary Science Letters, 78(2–3), 200–210.

      44 Carroll, M. R., & Rutherford, M. J. (1988). Sulfur Speciation in Hydrous Experimental Glasses of Varying Oxidation‐State ‐ Results from Measured Wavelength Shifts of Sulfur X‐Rays. American Mineralogist, 73(7–8), 845–849.

      45 Chin, E. J., Shimizu, K., Bybee, G. M., & Erdman, M. E. (2018). On the development of the calc‐alkaline and tholeiitic magma series: A deep crustal cumulate perspective. Earth and Planetary Science Letters, 482, 277–287. doi: 10.1016/j.epsl.2017.11.016

      46 Christie, D. M., Carmichael, I. S. E., & Langmuir, C. H. (1986). Oxidation‐states of Midocean Ridge basalt glasses. Earth and Planetary Science Letters, 79(3–4), 397–411.

      47 Chulick, G. S., Detweiler, S., & Mooney, W. D. (2013). Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42, 260–276. doi: 10.1016/j.jsames.2012.06.002

      48 Coombs, M. L., & Gardner, J. E. (2001). Shallow‐storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska. Geology, 29(9), 775–778. doi: 10.1130/0091‐7613(2001)029<0775:sscftr>2.0.co;2.

      49 Cottrell, E., & Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3–4), 270–282. doi: 10.1016/j.epsl.2011.03.014

      50 Cottrell, E., Kelley, K. A., Lanzirotti, A., & Fischer, R. A. (2009). High‐precision determination of iron oxidation state in silicate glasses using XANES. Chemical Geology, 268(3–4), 167–179. doi: 10.1016/j.chemgeo.2009.08.008

      51 Cottrell, E., Birner, S. K., Brounce, M., Davis, F. A., Waters, L. E., & Kelley, K. A. (2021). Oxygen Fugacity Across Tectonic Settings, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). http://doi.org/10.26022/IEDA/111899

      52 Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A., Botcharnikov, R., et al. (2018). A Mössbauer‐based XANES calibration for hydrous basalt glasses reveals radiation‐induced oxidation of Fe. American Mineralogist: Journal of Earth and Planetary Materials, 103(4), 489–501.

      53 Crabtree, S., & Lange, R. (2011). An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre‐ and post‐eruptive Fe2+ concentrations. Contributions to Mineralogy and Petrology, 163, 209–224. doi: 10.1007/s00410‐011‐0667‐7

      54 Crabtree, S. M., & Lange, R. A. (2011). Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing‐induced rapid crystallization? Journal of Petrology, 52(1), 3–38. doi: 10.1093/petrology/egq067

      55 Crabtree, S. M., & Waters, L. E. (2017). The petrologic history of the Sanganguey volcanic field, Nayarit, Mexico: Comparisons in a suite of crystal‐rich and crystal‐poor lavas. Journal of Volcanology and Geothermic Research, 336, 51–67. doi: 10.1016/j.jvolgeores.2017.02.005.

      56 Darbyshire, F. A., White, R. S., & Priestley, K. F. (2000). Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters, 181, 409–428.

      57 Das, T., & Nolet, G. (1998). Crustal thickness map of the western United States by partitioned waveform inversion. Journal of Geophysical Research: Solid Earth, 103(B12), 30021–30038.

      58 Dasgupta, R., Jackson, M. G., & Lee, C.‐T. A. (2010). Major element chemistry of ocean island basalts – Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 289(3–4), 377–392.

      59 Dauphas, N., Craddock, P. R., Asimow, P. D., Bennett, V. C., Nutman, A. P., & Ohnenstetter, D. (2009). Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288(1–2), 255–267.

      60 Davis, F. A., & Cottrell, E. (2018). Experimental investigation of basalt and peridotite oxybarometers: implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. American Mineralogist, 103(7), 1056–1067. doi: http://doi.org/10.2138/am‐2018‐6280

      61 Davis, F. A., Humayun, M., Hirschmann, M. M., & Cooper, R. S. (2013). Experimentally determined mineral/melt partitioning of first‐row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochimica et Cosmochimica Acta, 104, 232–260. doi: 10.1016/j.gca.2012.11.009

      62 Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M., & Lopez, O. G. (2017). Revisiting the electron microprobe method of spinel‐olivine‐orthopyroxene oxybarometry applied to spinel peridotites. American Mineralogist, 102(2), 421–435.

      63 Debret, B., Andreani, M., Muñoz, M., Bolfan‐Casanova, N., Carlut, J., Nicollet, C., et al. (2014). Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 400, 206–218. doi: 10.1016/j.epsl.2014.05.03

      64 Devine, J. D., Rutherford, M. J., Norton, G. E., & Young, S. R. (2003). Magma storage region processes inferred from geochemistry of Fe‐Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology, 44(8), 1375–1400. doi: 10.1093/petrology/44.8.1375

      65 El‐Rus, M. A. A., Neumann, E. R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1), 24–46.

      66 Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7), 14991–15019.

      67 Eugster, H. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761.

      68 Eugster, H. P. (Ed.) (1959). Oxidation and reduction in metamorphism, New York: John Wiley & Sons. 397–426 pp.

      69 Evans, K. A. (2021), Redox decoupling, redox budgets and magma recycling. In: D. R. Neuville and R. Moretti, (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.

      70 Evans, K. A., & Tomkins, A. G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308, 401–409. doi: 10.1016/j.epsl.2011.06.009

      71 Evans, K. A., Elburg, M. A., & Kamenetsky, V. S. (2012). Oxidation state of subarc mantle. Geology, 40(9), 783–786. doi: 10.1130/g33037.1

      72 Ewart, A. (1979). A review of the mineralogy and chemistry of Tertiary‐recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6, 13–121.

      73 Farner,