259 Sinogeikin, S.V., & Bass, J.D. (2000). Single‐crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys. Earth Planet. Inter., 120, 43–62. https://doi.org/10.1016/S0031‐9201(00)00143‐6
260 Sinogeikin, S.V., Katsura, T., & Bass, J.D. (1998). Sound velocities and elastic properties of Fe‐bearing wadsleyite and ringwoodite. J. Geophys. Res. – Solid Earth, 103, 20819–20825. https://doi.org/10.1029/98JB01819
261 Sinogeikin, S.V., Lakshtanov, D.L., Nicholas, J.D., & Bass, J.D. (2004). Sound velocity measurements on laser‐heated MgO and Al2O3. Phys. Earth Planet. Inter., 143–144, 575–586. https://doi.org/10.1016/j.pepi.2003.09.017
262 Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.‐L., et al. (2007). The amount of recycled crust in sources of mantle‐derived melts. Science, 316, 412–417. https://doi.org/10.1126/science.1138113
263 Solomatova, N.V., Jackson, J.M., Sturhahn, W., Wicks, J.K., Zhao, J., Toellner, T.S., et al. (2016). Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core–mantle boundary. Am. Mineral., 101, 1084–1093. https://doi.org/10.2138/am‐2016‐5510
264 Spasojevic, S., Gurnis, M., & Sutherland, R. (2010). Mantle upwellings above slab graveyards linked to the global geoid lows. Nat. Geosci., 3, 435–438. https://doi.org/10.1038/ngeo855
265 Spetzler, H. (1970). Equation of state of polycrystalline and single‐crystal MgO to 8 kilobars and 800°K. J. Geophys. Res., 75, 2073–2087. https://doi.org/10.1029/JB075i011p02073
266 Spetzler, H., Shen, A., Chen, G., Herrmannsdoerfer, G., Schulze, H., & Weigel, R. (1996). Ultrasonic measurements in a diamond anvil cell. Phys. Earth Planet. Inter., 98, 93–99. https://doi.org/10.1016/S0031‐9201(96)03171‐8
267 Speziale, S., Lee, V.E., Clark, S.M., Lin, J.F., Pasternak, M.P., & Jeanloz, R. (2007). Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth’s lower mantle. J. Geophys. Res. – Solid Earth, 112, B10212. https://doi.org/10.1029/2006JB004730
268 Speziale, S., Marquardt, H., & Duffy, T.S. (2014). Brillouin scattering and its application in geosciences. Rev. Mineral. Geochem., 78, 543–603. https://doi.org/10.2138/rmg.2014.78.14
269 Speziale, S., Milner, A., Lee, V.E., Clark, S.M., Pasternak, M.P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proc. Natl. Acad. Sci. U.S.A., 102, 17918–17922. https://doi.org/10.1073/pnas.0508919102
270 Stacey, F.D., & Davis, P.M. (2004). High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter., 142, 137–184. https://doi.org/10.1016/j.pepi.2004.02.003
271 Stackhouse, S., Brodholt, J.P., & Price, G.D. (2006). Elastic anisotropy of FeSiO3 end‐members of the perovskite and post‐perovskite phases. Geophys. Res. Lett., 33, L01304. https://doi.org/10.1029/2005GL023887
272 Stackhouse, S., Brodholt, J.P., & Price, G.D. (2005a). High temperature elastic anisotropy of the perovskite and post‐perovskite polymorphs of Al2O3. Geophys. Res. Lett., 32, L13305. https://doi.org/10.1029/2005GL023163
273 Stackhouse, S., Brodholt, J.P., Wookey, J., Kendall, J.‐M., & Price, G.D. (2005b). The effect of temperature on the seismic anisotropy of the perovskite and post‐perovskite polymorphs of MgSiO3. Earth Planet. Sci. Lett., 230, 1–10. https://doi.org/10.1016/j.epsl.2004.11.021
274 Stackhouse, S., Stixrude, L., & Karki, B.B. (2010). Determination of the high‐pressure properties of fayalite from first‐principles calculations. Earth Planet. Sci. Lett., 289, 449–456. https://doi.org/10.1016/j.epsl.2009.11.033
275 Steinberger, B. (2000). Slabs in the lower mantle — results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Inter., 118, 241–257. https://doi.org/10.1016/S0031‐9201(99)00172‐7
276 Stephens, D.R., & Drickamer, H.G. (1961a). Effect of pressure on the spectrum of ruby. J. Chem. Phys., 35, 427–429. https://doi.org/10.1063/1.1731945
277 Stephens, D.R., & Drickamer, H.G. (1961b). Effect of pressure on the spectra of five nickel complexes. J. Chem. Phys., 34, 937–940. https://doi.org/10.1063/1.1731696
278 Stixrude, L., Cohen, R.E., & Hemley, R.J. (1998). Theory of minerals at high pressure. Rev. Mineral. Geochem., 37, 639–671.
279 Stixrude, L., & Lithgow‐Bertelloni, C. (2012). Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci., 40, 569–595. https://doi.org/10.1146/annurev.earth.36.031207.124244
280 Stixrude, L., & Lithgow‐Bertelloni, C. (2011). Thermodynamics of mantle minerals — II. Phase equilibria. Geophys. J. Int., 184, 1180–1213. https://doi.org/10.1111/j.1365‐246X.2010.04890.x
281 Stixrude, L., & Lithgow‐Bertelloni, C. (2005). Thermodynamics of mantle minerals — I. Physical properties. Geophys. J. Int., 162, 610–632. https://doi.org/10.1111/j.1365‐246X.2005.02642.x
282 Stixrude, L., Lithgow‐Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Phys. Rev. B, 75, 024108. https://doi.org/10.1103/PhysRevB.75.024108
283 Stracke, A. (2012). Earth’s heterogeneous mantle: A product of convection‐driven interaction between crust and mantle. Chem. Geol., 330–331, 274–299. https://doi.org/10.1016/j.chemgeo.2012.08.007
284 Sturhahn, W. (2004). Nuclear resonant spectroscopy. J. Phys.: Condens. Matter, 16, S497–S530. https://doi.org/10.1088/0953‐8984/16/5/009
285 Sturhahn, W., Jackson, J.M. (2007). Geophysical applications of nuclear resonant spectroscopy. In Ohtani, E. (Ed.), Advances in High‐Pressure Mineralogy, Geological Society of America, Boulder, CO, pp. 157–174. https://doi.org/10.1130/2007.2421(09)
286 Sturhahn, W., Jackson, J.M., Lin, J.‐F. (2005). The spin state of iron in minerals of Earth’s lower mantle. Geophys. Res. Lett., 32, L12307. https://doi.org/10.1029/2005GL022802
287 Sun,