123 Hsu, H., Blaha, P., Cococcioni, M., & Wentzcovitch, R.M. (2011). Spin‐state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys. Rev. Lett., 106, 118501. https://doi.org/10.1103/PhysRevLett.106.118501
124 Hsu, H., Umemoto, K., Blaha, P., & Wentzcovitch, R.M. (2010a). Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett., 294, 19–26. https://doi.org/10.1016/j.epsl.2010.02.031
125 Hsu, H., Umemoto, K., Wu, Z., & Wentzcovitch, R.M. (2010b). Spin‐state crossover of iron in lower‐mantle minerals: Results of DFT+U investigations. Rev. Mineral. Geochem, 71, 169–199. https://doi.org/10.2138/rmg.2010.71.09
126 Hubbard, J. (1963). Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A, 276, 238–257. https://doi.org/10.1098/rspa.1963.0204
127 Hyung, E., Huang, S., Petaev, M.I., Jacobsen, S.B. (2016). Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet. Sci. Lett., 440, 158–168. https://doi.org/10.1016/j.epsl.2016.02.001
128 Imada, S., Hirose, K., Komabayashi, T., Suzuki, T., & Ohishi, Y. (2012). Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca‐ferrite‐type phases. Phys. Chem. Miner., 39, 525–530. https://doi.org/10.1007/s00269‐012‐0508‐x
129 Immoor, J., Marquardt, H., Miyagi, L., Speziale, S., Merkel, S., Schwark, I., et al. (2020). An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite‐heated diamond anvil cell. Rev. Sci. Instrum., 91, 045121. https://doi.org/10.1063/1.5143293
130 Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., & Frost, D.J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327, 193–195. https://doi.org/10.1126/science.1181443
131 Isaak, D.G. (1992). High‐temperature elasticity of iron‐bearing olivines. J. Geophys. Res. – Solid Earth, 97, 1871–1885. https://doi.org/10.1029/91JB02675
132 Isaak, D.G., Anderson, O.L., Goto, T., & Suzuki, I. (1989). Elasticity of single‐crystal forsterite measured to 1700 K. J. Geophys. Res. – Solid Earth, 94, 5895–5906. https://doi.org/10.1029/JB094iB05p05895
133 Ishii, M., & Tromp, J. (1999). Normal‐mode and free‐air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236. https://doi.org/10.1126/science.285.5431.1231
134 Ishii, T., Liu, Z., & Katsura, T. (2019). A breakthrough in pressure generation by a Kawai‐type multi‐anvil apparatus with tungsten carbide anvils. Engineering, 5, 434–440. https://doi.org/10.1016/j.eng.2019.01.013
135 Ita, J., & Stixrude, L. (1992). Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. – Solid Earth, 97, 6849–6866. https://doi.org/10.1029/92JB00068
136 Jackson, I. (2015). Properties of rocks and minerals: Physical origins of anelasticity and attenuation in rock. In Schubert, G. (Ed.), Treatise on Geophysics, 2nd ed., Elsevier, Amsterdam, pp. 539–571. https://doi.org/10.1016/B978‐0‐444‐53802‐4.00045‐2
137 Jackson, I. (1998). Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys. J. Int., 134, 291–311. https://doi.org/10.1046/j.1365‐246x.1998.00560.x
138 Jackson, J.M., Sturhahn, W., Shen, G., Zhao, J., Hu, M.Y., Errandonea, D., et al. (2005a). A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. Am. Mineral., 90, 199–205. https://doi.org/10.2138/am.2005.1633
139 Jackson, J.M., Zhang, J., Shu, J., Sinogeikin, S.V., Bass, J.D. (2005b). High‐pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett., 32, L21305. https://doi.org/10.1029/2005GL023522
140 Jacobsen, S.D., Reichmann, H.‐J., Spetzler, H.A., Mackwell, S.J., Smyth, J.R., et al. (2002). Structure and elasticity of single‐crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res. – Solid Earth, 107, ECV 4‐1–ECV 4‐14. https://doi.org/10.1029/2001JB000490
141 Jacobsen, S.D., Spetzler, H., Reichmann, H.J., & Smyth, J.R. (2004). Shear waves in the diamond‐anvil cell reveal pressure‐induced instability in (Mg,Fe)O. Proc. Natl. Acad. Sci. U.S.A., 101, 5867–5871. https://doi.org/10.1073/pnas.0401564101
142 Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., & Duffy, T.S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Phys. Earth Planet. Inter., 172, 235–240. https://doi.org/10.1016/j.pepi.2008.09.017
143 Kaneshima, S., Helffrich, G. (2009). Lower mantle scattering profiles and fabric below Pacific subduction zones. Earth Planet. Sci. Lett., 282, 234–239. https://doi.org/10.1016/j.epsl.2009.03.024
144 Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., et al. (2012). BX90: A new diamond anvil cell design for X‐ray diffraction and optical measurements. Rev. Sci. Instrum., 83, 125102. https://doi.org/10.1063/1.4768541
145 Karato, S. (2008). Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804892
146 Karato, S. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20, 1623–1626. https://doi.org/10.1029/93GL01767
147 Karki, B.B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high‐pressure polymorphs of silica. Geophys. Res. Lett., 24, 3269–3272. https://doi.org/10.1029/97GL53196
148 Karki, B.B., Stixrude, L., & Wentzcovitch, R.M. (2001a). High‐pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys., 39, 507–534. https://doi.org/10.1029/2000RG000088
149 Karki,