37 Boukaré, C.‐E., Ricard, Y., & Fiquet, G. (2015). Thermodynamics of the MgO‐FeO‐SiO2 system up to 140 GPa: Application to the crystallization of Earth’s magma ocean. J. Geophys. Res. – Solid Earth, 120, 6085–6101. https://doi.org/10.1002/2015JB011929
38 Bower, D.J., Wicks, J.K., Gurnis, M., & Jackson, J.M. (2011). A geodynamic and mineral physics model of a solid‐state ultralow‐velocity zone. Earth Planet. Sci. Lett., 303, 193–202. https://doi.org/10.1016/j.epsl.2010.12.035
39 Brandenburg, J.P., v& an Keken, P.E. (2007). Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. – Solid Earth, 112, B06403. https://doi.org/10.1029/2006JB004813
40 Buchen, J., Marquardt, H., Ballaran, T.B., Kawazoe, T., & McCammon, C. (2017). The equation of state of wadsleyite solid solutions: constraining the effects of anisotropy and crystal chemistry. Am. Mineral., 102, 2494–2504. https://doi.org/10.2138/am‐2017‐6162
41 Buchen, J., Marquardt, H., Schulze, K., Speziale, S., Boffa Ballaran, T., Nishiyama, N., & Hanfland, M. (2018a). Equation of state of polycrystalline stishovite across the tetragonal‐orthorhombic phase transition. J. Geophys. Res. – Solid Earth, 123, 7347–7360. https://doi.org/10.1029/2018JB015835
42 Buchen, J., Marquardt, H., Speziale, S., Kawazoe, T., Boffa Ballaran, T., & Kurnosov, A. (2018b). High‐pressure single‐crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth Planet. Sci. Lett., 498, 77–87. https://doi.org/10.1016/j.epsl.2018.06.027
43 Burkel, E. (2000). Phonon spectroscopy by inelastic x‐ray scattering. Rep. Prog. Phys., 63, 171–232. https://doi.org/10.1088/0034‐4885/63/2/203
44 Burns, R.G. (1993). Mineralogical Applications of Crystal Field Theory, 2nd ed., Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511524899
45 Burns, R.G. (1985). Thermodynamic data from crystal field spectra. Rev. Mineral. Geochem., 14, 277–316.
46 Cammarano, F., Deuss, A., Goes, S., & Giardini, D. (2005a). One‐dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints. J. Geophys. Res. – Solid Earth, 110, B01306. https://doi.org/10.1029/2004JB003272
47 Cammarano, F., Goes, S., Deuss, A., & Giardini, D. (2005b). Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet. Sci. Lett., 232, 227–243. https://doi.org/10.1016/j.epsl.2005.01.031
48 Cammarano, F., Goes, S., Vacher, P., & Giardini, D. (2003). Inferring upper‐mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 138, 197–222. https://doi.org/10.1016/S0031‐9201(03)00156‐0
49 Cammarano, F., Marquardt, H., Speziale, S., & Tackley, P.J. (2010). Role of iron‐spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophys. Res. Lett., 37, L03308. https://doi.org/10.1029/2009GL041583
50 Cammarano, F., Romanowicz, B., Stixrude, L., Lithgow‐Bertelloni, C., & Xu, W. (2009). Inferring the thermochemical structure of the upper mantle from seismic data. Geophys. J. Int., 179, 1169–1185. https://doi.org/10.1111/j.1365‐246X.2009.04338.x
51 Campbell, A.J. (2008). Measurement of temperature distributions across laser heated samples by multispectral imaging radiometry. Rev. Sci. Instrum., 79, 015108. https://doi.org/10.1063/1.2827513
52 Car, R., Parrinello, M. (1985). Unified approach for molecular dynamics and density‐functional theory. Phys. Rev. Lett., 55, 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471
53 Caracas, R. (2010). Spin and structural transitions in AlFeO3 and FeAlO3 perovskite and post‐perovskite. Phys. Earth Planet. Inter., 182, 10–17. https://doi.org/10.1016/j.pepi.2010.06.001
54 Caracas, R., & Cohen, R.E. (2005). Effect of chemistry on the stability and elasticity of the perovskite and post‐perovskite phases in the MgSiO3‐FeSiO3‐Al2O3 system and implications for the lowermost mantle. Geophys. Res. Lett., 32, L16310. https://doi.org/10.1029/2005GL023164
55 Carpenter, M.A. (2006). Elastic properties of minerals and the influence of phase transitions. Am. Mineral., 91, 229–246. https://doi.org/10.2138/am.2006.1979
56 Carpenter, M.A., Hemley, R.J., & Mao, H. (2000). High‐pressure elasticity of stishovite and the P42/mnm ⇌ Pnnm phase transition. J. Geophys. Res. – Solid Earth, 105, 10807–10816. https://doi.org/10.1029/1999JB900419
57 Carpenter, M.A., & Salje, E.K.H. (1998). Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral., 10, 693–812. https://doi.org/10.1127/ejm/10/4/0693
58 Carpenter, M.A., Salje, E.K.H., & Graeme‐Barber, A. (1998). Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral., 10, 621–691. https://doi.org/10.1127/ejm/10/4/0621
59 Carrier, P., Wentzcovitch, R., & Tsuchiya, J. (2007). First‐principles prediction of crystal structures at high temperatures using the quasiharmonic approximation. Phys. Rev. B, 76, 064116. https://doi.org/10.1103/PhysRevB.76.064116
60 Catalli, K., Shim, S.‐H., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P., et al. (2010). Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth Planet. Sci. Lett., 289, 68–75. https://doi.org/10.1016/j.epsl.2009.10.029
61 Chantel, J., Frost, D.J., McCammon, C.A., Jing, Z., & Wang, Y. (2012). Acoustic velocities of pure and iron‐bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett., 39, L19307. https://doi.org/10.1029/2012GL053075
62 Chen, B., Jackson, J.M., Sturhahn, W., Zhang, D., Zhao, J., Wicks, J.K., & Murphy, C.A. (2012). Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa. J. Geophys. Res. – Solid Earth, 117, B08208. https://doi.org/10.1029/2012JB009162
63 Chung, D.H., & Buessem, W.R. (1967). The Voigt‐Reuss‐Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β‐ZnS, ZnSe, and CdTe. J. Appl. Phys., 38, 2535–2540. https://doi.org/10.1063/1.1709944
64 Chust,