Small-Angle Scattering. Ian W. Hamley. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ian W. Hamley
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119768340
Скачать книгу
equals sigma-summation Underscript j equals 1 Overscript upper N Endscripts sigma-summation Underscript k equals 1 Overscript upper N Endscripts a Subscript j Baseline a Subscript k Baseline exp left-bracket minus i bold q period left-parenthesis bold r Subscript j Baseline minus bold r Subscript k Baseline right-parenthesis right-bracket"/>

      Whereas, for a continuous distribution of scattering density,

      (1.7)gamma left-parenthesis bold r right-parenthesis equals integral upper Delta rho left-parenthesis bold r plus bold r double-prime right-parenthesis upper Delta rho left-parenthesis bold r double-prime right-parenthesis d bold r Superscript double-prime Baseline

      Then

Schematic illustration of the ghost particle construction. The overlap volume (shaded) is the autocorrelation function.

      (1.9)gamma left-parenthesis r right-parenthesis equals 1 minus three halves left-parenthesis StartFraction r Over 2 upper R EndFraction right-parenthesis plus one half left-parenthesis StartFraction r Over 2 upper R EndFraction right-parenthesis cubed

      Equation (1.6) can alternatively be written for uncorrelated scatterers as

      1.3.2 Isotropic Scattering Systems

      (1.11)upper I left-parenthesis q right-parenthesis equals sigma-summation Underscript j equals 1 Overscript upper N Endscripts sigma-summation Underscript k equals 1 Overscript upper N Endscripts a Subscript j Baseline a Subscript k Baseline less-than exp left-bracket minus i bold q period bold r Subscript italic j k Baseline right-bracket greater-than Subscript upper Omega Baseline

      where rjk = rjrk.

      The average over all orientations of rjk can be evaluated as follows

      This leads to the Debye equation for scattering from an isotropically averaged ensemble:

      (1.13)upper I left-parenthesis q right-parenthesis equals sigma-summation Underscript j equals 1 Overscript upper N Endscripts sigma-summation Underscript k equals 1 Overscript upper N Endscripts a Subscript j Baseline a Subscript k Baseline StartFraction sine left-parenthesis q r Subscript italic j k Baseline right-parenthesis Over q r Subscript italic j k Baseline EndFraction

      (1.15)upper I left-parenthesis q right-parenthesis equals 4 pi integral Subscript 0 Superscript upper D Subscript italic max Baseline Baseline upper Delta rho squared left-parenthesis r right-parenthesis StartFraction sine left-parenthesis italic q r right-parenthesis Over italic q r EndFraction r squared italic d r