Small-Angle Scattering. Ian W. Hamley. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ian W. Hamley
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119768340
Скачать книгу
preceding derivation (Eqs. (1.26)(1.32)) applies for the case of monodisperse particles with spherical symmetry. Other expressions have been introduced for other cases. For particles that are slightly anisotropic, the ‘decoupling’ approximation [16] is often used. The intensity for monodisperse particles is written as

      (1.33)upper I left-parenthesis q right-parenthesis equals upper P left-parenthesis q right-parenthesis left-bracket 1 plus beta left-parenthesis q right-parenthesis left-parenthesis upper S left-parenthesis q right-parenthesis minus 1 right-parenthesis right-bracket

      where

      (1.35)upper I left-parenthesis q right-parenthesis equals left pointing angle upper P left-parenthesis q right-parenthesis right pointing angle left-bracket 1 plus beta left-parenthesis q right-parenthesis left-parenthesis upper S left-parenthesis q right-parenthesis minus 1 right-parenthesis right-bracket

      where

      (1.36)beta left-parenthesis q right-parenthesis equals left-bracket integral upper D left-parenthesis upper R right-parenthesis upper F left-parenthesis q comma upper R right-parenthesis italic d upper R right-bracket squared slash left-bracket integral upper D left-parenthesis upper R right-parenthesis upper F squared left-parenthesis q comma upper R right-parenthesis italic d upper R right-bracket

      Here, D(R) is the dispersity distribution function (Section 1.7.4), which may have a Gaussian or log‐normal function form, for example. The structure factor S(q) is evaluated for the average particle size.

      An alternative approximation is the local monodisperse approximation, which treats the system as an ensemble of locally monodisperse components (i.e. a particle of a given size is surrounded by particles of the same size). The intensity is then [17]

      (1.37)upper I left-parenthesis q right-parenthesis equals integral upper D left-parenthesis upper R right-parenthesis upper F squared left-parenthesis q comma upper R right-parenthesis upper S left-parenthesis q comma upper R right-parenthesis italic d upper R

      Other approximations for the factoring of form and structure factors have been proposed [17].

1.6 STRUCTURE FACTORS

      1.6.1 Analytical Expressions

      Analytical expressions for structure factors are available for a few simple systems including spherical and cylindrical particles [17, 18] and lamellar structures. For spheres, the hard sphere structure factor is the simplest model, as the name suggests this structure factor is derived based on purely steric interactions between solid packed spheres (volume fraction ϕ and hard sphere radius RHS). It is written

      Here

      (1.39)StartLayout 1st Row 1st Column upper G left-parenthesis upper A right-parenthesis 2nd Column equals StartFraction alpha left-parenthesis sine upper A minus upper A cosine upper A right-parenthesis Over upper A squared EndFraction plus StartFraction beta left-parenthesis 2 upper A sine upper A plus left-parenthesis 2 minus upper A squared right-parenthesis cosine upper A minus 2 right-parenthesis Over upper A cubed EndFraction 2nd Row 1st Column Blank 2nd Column plus StartFraction gamma left-bracket minus upper A Superscript 4 Baseline cosine italic upper A plus 4 left-brace left-parenthesis 3 upper A squared minus 6 right-parenthesis cosine upper A plus left-parenthesis upper A cubed minus 6 upper A right-parenthesis sine upper A plus 6 right-brace right-bracket Over upper A Superscript 5 Baseline EndFraction EndLayout

      (1.40)alpha equals StartFraction left-parenthesis 1 plus 2 phi right-parenthesis squared Over left-parenthesis 1 minus phi right-parenthesis Superscript 4 Baseline EndFraction comma beta equals StartFraction minus 6 phi left-parenthesis 1 plus StartFraction phi Over 2 EndFraction right-parenthesis squared Over left-parenthesis 1 minus phi right-parenthesis Superscript 4 Baseline EndFraction comma gamma equals StartFraction phi alpha Over 2 EndFraction

      At q = 0, the Carnahan‐Starling closure to the hard sphere structure factor gives the expression [11, 19]

      (1.41)upper S left-parenthesis q equals 0 right-parenthesis equals StartFraction left-parenthesis 1 minus phi right-parenthesis Superscript 4 Baseline Over left-parenthesis 1 plus 2 phi right-parenthesis squared plus phi cubed left-parenthesis phi minus 4 right-parenthesis EndFraction

      The sticky hard sphere potential allows for a simple attractive potential between spheres (the equation for the structure factor is presented elsewhere [17, 18]). For charged spherical particles, the screened Coulomb potential may be employed.

      For cylinders, a random phase approximation (RPA, Section 1.8) equation may be used or the PRISM (polymer reference interaction site model, Section 5.8) structure factor. The RPA expression is

      (1.42)upper S left-parenthesis q right-parenthesis equals n left-parenthesis upper Delta rho right-parenthesis squared StartFraction upper P Subscript italic c y l Baseline left-parenthesis q right-parenthesis Over 1 plus nu upper P Subscript italic c y l Baseline left-parenthesis q right-parenthesis EndFraction

      Here n is the number density of cylinders, ν is usually treated as a fit parameter and Pcyl(q) is the form factor of a cylinder of radius R and length L (see also Table 1.2):

      (1.43)upper 


                  <div class= Скачать книгу