121Poe D ZJ, Zhang W, Qin J, Abo Ramadan U, Fornara A, Muhammed M, Pyykkö I: MRI of the cochlea with superparamagnetic iron oxide nanoparticles compared to gadolinium chelate contrast agents in a rat model. Europ J Nanomed 2009;2:29–36.
122Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, et al: Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 2008;8:3423–3428.
123Zou J, Zhang W, Poe D, Qin J, Fornara A, Zhang Y, et al: MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond) 2010;5:739–754.
124Haviv AH, Greneche JM, Lellouche JP: Aggregation control of hydrophilic maghemite (gamma-Fe2O3) nanoparticles by surface doping using cerium atoms. J Am Chem Soc 2010;132:12519–12521.
125Zou J, Ostrovsky S, Israel LL, Feng H, Kettunen MI, Lellouche JM, et al: Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. J Biomed Mater Res B Appl Biomater 2017;105:1883–1891.
126Zhen M, Zheng J, Wang Y, Shu C, Gao F, Zou J, et al: Multifunctional nanoprobe for MRI/optical dual-modality imaging and radical scavenging. Chemistry 2013;19:14675–14681.
127Pyykko I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P: An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol Biol 2016;1427:363–415.
128Zou J, Pyykkö I, Yoshida T, Gürkov R, Shi H, Li Y, Zheng G, Peng R, Zheng H, Yin Y, Hyttinen J, Nakashima T, Naganawa S: A milestone research in Meniere’s disease by visualizing endolymphatic hydrops using gadolinium-enhanced inner ear MRI and the challenges in clinical application. Austin J Radiol 2015;2:1–7.
129Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Kinnunen PK, et al: Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. J Nanobiotechnology 2010;8:32.
130Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Pyykko I, et al: Size-dependent passage of liposome nanocarriers with preserved posttransport integrity across the middle-inner ear barriers in rats. Otol Neurotol 2012;33:666–673.
131Zou J, Sood R, Zhang Y, Kinnunen PK, Pyykko I: Pathway and morphological transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery system. Nanomedicine (Lond) 2014;9:2143–2155.
132Zou J, Peng B, Ostrovsky S, Li B, Li C, Kettunen MI, Lellouche JM, Pyykkö I: Biological effect tetra-branched anti-TNF-peptide and coating ratio-dependent penetration of the peptide-conjugated Cerium3/4+ Cation-stabilized gamma-maghemite nanoparticles into rat inner ear after transtympanic injection visualized by MRI. J Mater Sci Nanotechnol 2017, in press.
133Bellos C, Rigas G, Spiridon IF, Bibas A, Iliopoulou D, Bohnke F, et al: Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int 2014;2014:485783.
134Poznyakovskiy AA, Zahnert T, Kalaidzidis Y, Schmidt R, Fischer B, Baumgart J, et al: The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res 2008;243:95–104.
135Poznyakovskiy AA, Mainka A, Platzek I, Murbe D: A fast semiautomatic algorithm for centerline-based vocal tract segmentation. Biomed Res Int 2015;2015:906356.
136Zou J, Hannula M, Misra S, Feng H, Labrador RH, Aula AS, et al: Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnol 2015;13:5.
137Wachsmann-Hogiu S, Weeks T, Huser T: Chemical analysis in vivo and in vitro by Raman spectroscopy – from single cells to humans. Curr Opin Biotechnol 2009;20:63–73.
138Pandey R, Paidi SK, Kang JW, Spegazzini N, Dasari RR, Valdez TA, et al: Discerning the differential molecular pathology of proliferative middle ear lesions using Raman spectroscopy. Sci Rep 2015;5:13305.
139Rodriguez LG, Lockett SJ, Holtom GR: Coherent anti-stokes Raman scattering microscopy: a biological review. Cytometry A 2006;69:779–791.
140Folick A, Min W, Wang MC: Label-free imaging of lipid dynamics using coherent anti-stokes raman scattering (CARS) and stimulated raman scattering (SRS) microscopy. Curr Opin Genet Dev 2011;21:585–590.
141Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R: Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 2011;7:137–145.
142Brustlein S, Berto P, Hostein R, Ferrand P, Billaudeau C, Marguet D, et al: Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Opt Express 2011;19:12562–12568.
143Wang Z, Gao L, Luo P, Yang Y, Hammoudi AA, Wong KK, et al: Coherent anti-stokes raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers. Opt Express 2011;19:7960–7970.
The work has been performed at the University of Tampere, Lääkärinkatu 1, 33520 Tampere.
Ilmari Pyykkö
Hearing and Balance Research Unit, University of Tampere
Itäinen Puistotie 12 A 1
FI–00140 Tampere (Finland)
E-Mail [email protected]
Lea J, Pothier D (eds): Vestibular Disorders. Adv Otorhinolaryngol. Basel, Karger, 2019, vol 82, pp 32–38
DOI: 10.1159/000490269
______________________
Videonystagmography and Posturography
Carolyn Falls
University Health Network, Toronto, ON, Canada
______________________