33Mlynski R, Nguyen TD, Plontke SK, Kosling S: Presentation of floating mass transducer and vibroplasty couplers on CT and cone beam CT. Eur Arch Otorhinolaryngol 2014;271:665–672.
34Razafindranaly V, Truy E, Pialat JB, Martinon A, Bourhis M, Boublay N, et al: Cone beam CT versus multislice CT: radiologic diagnostic agreement in the postoperative assessment of cochlear implantation. Otol Neurotol 2016;37:1246–1254.
35Zhu L, Xie Y, Wang J, Xing L: Scatter correction for cone-beam CT in radiation therapy. Med Phys 2009;36:2258–2268.
36Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA: An empirical method for lag correction in cone-beam CT. Med Phys 2008;35:5187–5196.
37Meilinger M, Schmidgunst C, Schutz O, Lang EW: Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information. Z Med Phys 2011;21:174–182.
38Guldner C, Wiegand S, Weiss R, Bien S, Sesterhenn A, Teymoortash A, et al: Artifacts of the electrode in cochlea implantation and limits in analysis of deep insertion in cone beam tomography (CBT). Eur Arch Otorhinolaryngol 2012;269:767–772.
39Gupta R, Bartling SH, Basu SK, Ross WR, Becker H, Pfoh A, et al: Experimental flat-panel high-spatial-resolution volume CT of the temporal bone. AJNR Am J Neuroradiol 2004;25:1417–1424.
40Diogo I, Franke N, Steinbach-Hundt S, Mandapathil M, Weiss R, Werner JA, et al: Differences of radiological artefacts in cochlear implantation in temporal bone and complete head. Cochlear Implants Int 2014;15:112–117.
41Pearl MS, Roy A, Limb CJ: High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants. AJNR Am J Neuroradiol 2014;35:1202–1208.
42Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW: Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 2009;30:299–303.
43Verbist BM, Frijns JH, Geleijns J, van Buchem MA: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. AJNR Am J Neuroradiol 2005;26:424–429.
44Trieger A, Schulze A, Schneider M, Zahnert T, Murbe D: In vivo measurements of the insertion depth of cochlear implant arrays using flat-panel volume computed tomography. Otol Neurotol 2011;32:152–157.
45Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, et al: Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol 2010;130:443–452.
46Zou J, Koivisto J, Lahelma J, Aarnisalo A, Wolff J, Pyykko I: Imaging optimization of temporal bones with cochlear implant using a high-resolution cone beam CT and the corresponding effective dose. Ann Otol Rhinol Laryngol 2015;124:466–473.
47Zou J, Lähelmä J, Aarnisalo A, Pyykko I: Clinically relevant human temporal bone measurements using novel high-resolution cone-beam CT. J Otol 2017;12:9–17.
48Theunisse HJ, Joemai RM, Maal TJ, Geleijns J, Mylanus EA, Verbist BM: Cone-beam CT versus multi-slice CT systems for postoperative imaging of cochlear implantation – a phantom study on image quality and radiation exposure using human temporal bones. Otol Neurotol 2015;36:592–599.
49Yamane H, Iguchi H, Konishi K, Sakamaoto H, Wada T, Fujioka T, et al: Three-dimensional cone beam computed tomography imaging of the membranous labyrinth in patients with Meniere’s disease. Acta Otolaryngol 2014;134:1016–1021.
50Koivisto J, Kiljunen T, Wolff J, Kortesniemi M: Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry 2013;157:515–524.
51Kim DS, Rashsuren O, Kim EK: Conversion coefficients for the estimation of effective dose in cone-beam CT. Imaging Sci Dent 2014;44:21–29.
52Daly MJ, Siewerdsen JH, Moseley DJ, Jaffray DA, Irish JC: Intraoperative cone-beam CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype. Med Phys 2006;33:3767–3780.
53Naganawa S, Nakane T, Kawai H, Taoka T, Suzuki K, Iwano S, et al: Visualization of middle ear ossicles in elder subjects with ultra-short echo time MR imaging. Magn Reson Med Sci 2017;16:93–97.
54Naganawa S, Koshikawa T, Nakamura T, Fukatsu H, Ishigaki T, Aoki I: High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material. Eur Radiol 2003;13:2650–2658.
55Naganawa S, Satake H, Kawamura M, Fukatsu H, Sone M, Nakashima T: Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 Tesla. Eur Radiol 2008;18:920–924.
56Naganawa S, Kawai H, Sone M, Nakashima T: Increased sensitivity to low concentration gadolinium contrast by optimized heavily T2-weighted 3D-FLAIR to visualize endolymphatic space. Magn Reson Med Sci 2010;9:73–80.
57Naganawa S, Kawai H, Ikeda M, Sone M, Nakashima T: Imaging of endolymphatic hydrops in 10 minutes: a new strategy to reduce scan time to one third. Magn Reson Med Sci 2015;14:77–83.
58Naganawa S, Nakashima T: Visualization of endolymphatic hydrops with MR imaging in patients with Meniere’s disease and related pathologies: current status of its methods and clinical significance. Jpn J Radiol 2014;32:191–204.
59Nakashima T, Pyykko I, Arroll MA, Casselbrant ML, Foster CA, Manzoor NF, et al: Meniere’s disease. Nat Rev Dis Primers 2016;2:16028.
60Counter SA, Bjelke B, Klason T, Chen Z, Borg E: Magnetic resonance imaging of the cochlea, spiral ganglia and eighth nerve of the guinea