Operaciones básicas del proceso, mezclas y disoluciones. QUIE0108. Sergio Hurtado Melo. Читать онлайн. Newlib. NEWLIB.NET

Автор: Sergio Hurtado Melo
Издательство: Bookwire
Серия: Peraciones Básicas En Planta Químic
Жанр произведения: Зарубежная деловая литература
Год издания: 0
isbn: 9788416207046
Скачать книгу
son las que se describen a continuación.

      7.1. Radio atómico

      El tamaño o radio de un átomo viene determinado por el tamaño de la corteza electrónica. Fundamentalmente, depende de dos factores:

      1 El número de capas que posee el átomo, que viene determinado por número cuántico principal (n); de forma que cuanto mayor sea este número, mayor es el radio del átomo. Al bajar en un mismo grupo (columna), los electrones externos pasan más tiempo lejos del núcleo, lo que hace que aumente el tamaño del átomo, por tanto, el radio atómico aumenta al desplazarse de arriba hacia abajo en un mismo grupo.

      2 La carga nuclear efectiva, que es la responsable de atraer a los electrones, incluidos lo más externos, hacia el núcleo. Cuanto mayor sea dicha carga, mayor es la atracción y, por tanto, menor es el radio del átomo, por tanto, dentro de un mismo período (fila) el radio atómico disminuye al desplazarse de izquierda a derecha.

Image

       Ejemplo

      Ordenaremos los siguientes átomos de menor a mayor radio atómico: P (Z = 15); S (Z = 16); As (Z = 33); Se (Z = 34).

      El fósforo (P) y el azufre (S) se encuentran en el mismo período, situándose el S a la derecha del P, por tanto cabe esperar que el radio atómico del primero sea menor que el del P (se recuerda que el radio atómico aumenta de derecha a izquierda). Con el mismo razonamiento se espera que el radio atómico del selenio (Se) sea menor que el del arsénico (As). A su vez, el P y el As se encuentran en el mismo grupo, así como el S y el Se, por tanto, se espera que los radios atómicos del P y S sean menores que los de As y Se, respectivamente (se recuerda que el radio atómico aumenta conforme se baja en un mismo grupo).

      Por consiguiente, el S tiene el radio atómico más pequeño y el As el más grande. Pero, entre el P y el Se, ¿cuál de ellos tiene menor radio atómico? Para responder a esta pregunta se ha de partir de que, normalmente, el aumento del radio al bajar por un mismo grupo tiene mayor importancia que el efecto de desplazarse de derecha a izquierda, con lo cual el P tiene menor radio atómico que el Se.

      De manera que la distribución queda de la siguiente forma: S < P < Se < As.

      Cuando se está estudiando el tamaño de los iones se han de tener en cuenta las dos siguientes particularidades:

      1 En los cationes (iones con carga positiva) se reducen las repulsiones entre los electrones, por tanto, los cationes son más pequeños que los átomos con carga neutra del mismo elemento.

      2 En los aniones (iones con carga negativa) aumentan las repulsiones entre electrones, haciendo que estos se extiendan más en el espacio, por tanto, los aniones son más grandes que los átomos con carga neutra del mismo elemento.

      3 En iones con la misma carga, el tamaño aumenta al bajar por el mismo grupo.

      Si hay una serie isoelectrónica de iones, es decir, iones que poseen el mismo número de electrones, el radio atómico disminuye a medida que la carga nuclear (número atómico) aumenta, ya que los electrones son atraídos con más fuerza hacia el núcleo.

Image

       Ejemplo

      Ordenar de menor a mayor tamaño los siguientes iones: S2– (Z = 16), Cl (Z = 17), K+ (Z = 19), Ca2+ (Z = 20).

      Es una serie isoelectrónica, donde todos los iones tienen 18 electrones, se tiene: Ca2+<K+<Cl <S2-.

      7.2. Potencial de ionización

      Es la energía mínima que hay que suministrar a un átomo de un elemento para quitar un electrón de la última capa, venciendo así la atracción con el núcleo. Cuanto menor sea el número cuántico principal, es decir, cuanto mayor sea la atracción con el núcleo, más energía hay que suministrar, por tanto, el potencial de ionización aumenta al subir en un mismo grupo. Al desplazarse de izquierda a derecha dentro de un mismo período, la carga nuclear es mayor (mayor número atómico) y el potencial aumenta, ya que los electrones están más atraídos por el núcleo.

      Así como la energía necesaria para quitar el primer electrón se denomina primer potencial de ionización (I1), existe el segundo potencial de ionización (I2), que es la energía a suministrar para quitar el segundo electrón, y así sucesivamente con el tercer potencial de ionización (I3), etc. Cuanto mayor es la energía de ionización, más difícil es quitar el electrón (I1 < I2 < I3 etc); esto se debe a que se necesita mayor energía para quitarle un electrón a un ión cada vez más positivo.

      7.3. Afinidad electrónica (electro-afinidad)

      Es un concepto contrario al potencial de ionización, entendiéndose que es la energía desprendida cuando un átomo del elemento en estado gaseoso capta un electrón en su última capa.

      Esta propiedad mide la atracción del átomo por el electrón añadido, es decir, la facilidad con la que un átomo gana un electrón, mientras que el potencial de ionización medía la facilidad con la que un átomo pierde un electrón.

      La afinidad electrónica aumenta a medida que se desplaza de izquierda a derecha en un mismo período, hasta llegar a los gases nobles, que como excepción, tienen la última capa llena. Conforme se desplaza en un mismo grupo no se aprecia demasiado cambio, aunque se considera que aumenta al ascender, al igual que el potencial de ionización.

      7.4. Electronegatividad

      Es una propiedad que mide la tendencia que tienen los átomos a atraer hacia su núcleo electrones compartidos con otros átomos durante el proceso de formación de moléculas o redes iónicas, en el cual se comparten electrones de sus capas más externas.

      La electronegatividad de los elementos se mide en comparación con la del flúor, que es el más electronegativo, y, por tanto, se toma como referencia. Como se ha mencionado, los gases nobles, tienen la última capa llena, por lo que no tienden a formar enlaces, por tanto, tienen electronegatividad cero.

       Nota

      En general, esta propiedad varía al igual que el potencial de ionización y la afinidad electrónica, esto es, aumenta al desplazarse en un mismo período de izquierda a derecha y al ascender en un mismo grupo.

      Formular consiste en expresar la fórmula química del compuesto, indicando el número de átomos de cada elemento que forma la molécula. A excepción de los gases nobles, que son muy estables en la naturaleza, todos los átomos tienden a ganar o perder electrones para completar con electrones la última capa o nivel energético y adquirir así la configuración del gas noble correspondiente. De este modo, entre un átomo que cede electrones y otro que los acepta, estos se unen entre sí formando lo que se denomina enlace químico.

      Para nombrar los compuestos químicos se pueden usar tres nomenclaturas distintas aceptadas por la IUPAC (International Union of Pure and Applied Chemistry):

      1 Nomenclatura sistemática: consiste en nombrar la fórmula química de derecha a izquierda teniendo en cuenta los subíndices.

      2 Nomenclatura de stock: también se nombra de derecha a izquierda, pero se incluye entre paréntesis y en números romanos la valencia con la que actúan los elementos (en el caso de que puedan actuar