Квантовый ум. Грань между физикой и психологией. Арнольд Минделл. Читать онлайн. Newlib. NEWLIB.NET

Автор: Арнольд Минделл
Издательство: Баранов Дмитрий Сергеевич
Серия:
Жанр произведения: Философия
Год издания: 2002
isbn: 978-5-93454-147-8
Скачать книгу
образом на ОР и действительных числах. В конце концов, физика определяет себя как изучение общепринятых восприятий. Но наука забыла, что ее определение носит самоограничивающий характер и маргинализирует психологический опыт. Физика избегает изучения необщепринятых аспектов наблюдения, вроде личности наблюдателя или чувств, которые вызывает объект наблюдения. Физика теряет связь со своей математикой, своими комплексными числами, своими волновыми функциями и призрачной реальностью позади ОР. Однако изучение призрачных сфер не утеряно: там, где заканчивается современная физика, начинаются традиционный шаманизм и психология.

      Мы увидели, что закономерности, обнаруживающиеся в психологии восприятия и в шаманском опыте, согласуются с принципами математики и, как мы теперь знаем, физики. Это соответствие указывает на единое поле – подобную сновидению субстанцию опыта, которая лежит в основе жизни, в основе психологии и физики, электронов и их наблюдателей, всех нас. Это поле – основа развертывания 1, 2, 3 и бесконечности.

      В дальнейшем мы более подробно узнаем о том, как осознанное сновидение кодируется внутри. То же осознанное сновидение, что порождает сознание и реальность в психологии, дает нам основу для понимания невидимой сферы квантовых объектов и мира, в котором мы живем, – основную субстанцию Вселенной.

      Примечания

      1. Чтобы это проверить, вообразите, что вы кладете на пол линейку между своими ногами и зеркалом. Если вы стоите в комнате в точке a + bi и смотрите прямо вниз, туда, где кончаются ваши ступни, то сперва увидите деление линейки «100 см». Перемещая взгляд по линейке в направлении зеркала, вы будете видеть деления «95», «94», «93» и так далее, пока не дойдете до деления «1 см» и, наконец, до стены.

      Затем, если зеркало такое хорошее, что вы едва его замечаете, вы увидите в зеркале еще одну линейку. Эта линейка представляет собой отражение той, что лежит у ваших ног, и счет ее делений идет в обратном направлении.

      Прослеживая взглядом эту линейку, вы отсчитываете 1 см, потом 2, 3, 4 и так далее и, наконец, 100 см. Тогда, посмотрев вверх, вы увидите в зеркале самого себя, смотрящего вам в глаза! Ваше зеркальное отражение выглядит в точности как вы – с той лишь разницей, что вы находитесь на +100 см, а ваш двойник на -100 см.

      Между вами и вашим двойником есть и другие различия. Однако пока давайте думать только о том, что вы находитесь на +100 см, а ваш двойник на -100 см.

      2. В примечаниях 2, 3 и 4 обсуждаются более удивительные характеристики комплексных чисел. Вы можете выражать геометрию комплексных чисел тригонометрически, то есть в терминах углов.

      Примем, что 9 – это угол между R и осью х, как показано ниже на рис. 8.4 (tan означает тангенс, cos означает косинус; tan(θ) означает тангенс угла 9).

      Рис. 8.4 Комплексное число, выраженное в терминах углов Более подробно о комплексных числах можно прочитать в книгах Руэла В. Чарчхилла «Комплексные переменные и приложения» (Ruel V. Churchill. Complex Variables and Applications) и Ханса