28 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.
29 El‐Mounadi, K., Morales‐Floriano, M.L., and Garcia‐Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR‐Cas9. Frontiers in Plant Science 11: 56.
30 Endo, A., Masafumi, M., Kaya, H., and Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6: 38169.
31 Endo, M., Mikami, M., and Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology 170 (2): 667–677.
32 Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3 (11): e3647.
33 Fan, D., Liu, T., Li, C. et al. (2015). Efficient CRISPR/Cas9‐mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5: 12217.
34 Fan, Y., Xin, S., Dai, X. et al. (2020). Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146: 112146.
35 Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79: 348–359.
36 Feng, Z., Mao, Y., Xu, N. et al. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Casinduced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111: 4632–4637.
37 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nature Biotechnology 31 (9): 822–826.
38 Fu, Y., Sander, J.D., Reyon, D. et al. (2014). Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32 (3): 279.
39 Gallego‐Bartolomé, J., Gardiner, J., Liu, W. et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115 (9): E2125–E2134.
40 Gao, J., Wang, G., Ma, S. et al. (2015). CRISPR/Cas9‐mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87 (1–2): 99–110.
41 Gao, L., Cox, D.B., Yan, W.X. et al. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology 35 (8): 789.
42 Garneau, J.E., Dupuis, M.È., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (7320): 67–71.
43 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109 (39): E2579–E2586.
44 Gasparis, S., Przyborowski, M., Kała, M., and Nadolska‐Orczyk, A. (2019). Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA‐guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8 (8): 782.
45 González, M.N., Massa, G.A., Andersson, M. et al. (2020). Reduced enzymatic Browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in Plant Science 10: 1649.
46 Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. (2014). Highly specific and efficient CRISPR/Cas9‐catalyzed homology‐directed repair in drosophila. Genetics 196 (4): 961–971.
47 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research 35 (suppl_2): W52–W57.
48 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology 32: 577–582.
49 Han, Y.J. and Kim, J.I. (2019). Application of CRISPR/Cas9‐mediated gene editing for the development of herbicide‐resistant plants. Plant Biotechnology Reports 13: 447–457.
50 Heigwer, F., Kerr, G., Walther, N. et al. (2013). E‐TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research 41 (20): e190–e190.
51 Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11 (2): 122.
52 Huang, P., Xiao, A., Zhou, M. et al. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology 29 (8): 699–700.
53 Hummel, A.W., Chauhan, R.D., Cermak, T. et al. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16 (7): 1275–1282.
54 Iqbal, Z., Sattar, M.N., and Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science 7: 475.
55 Jang, G. and Joung, Y.H. (2019). CRISPR/Cas‐mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports 13 (1): 1–10.
56 Jansing, J., Schiermeyer, A., Schillberg, S. et al. (2019). Genome editing in agriculture: technical and practical considerations. International Journal of Molecular Sciences 20 (12): 2888.
57 Ji, X., Wang, D., and Gao, C. (2015). CRISPR editing‐mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science Bulletin 60: 1332.
58 Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnology Journal 14 (5): 1291–1301.
59 Jia, H., Zhang, Y., Orbović, V. et al. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15 (7): 817–823.
60 Jiang, W., Zhou, H., Bi, H. et al. (2013). Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41 (20): e188–e188.
61 Jiang, W.Z., Henry, I.M., Lynagh, P.G. et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal 15 (5): 648–657.
62 Jiménez, A., Hoff, B., and Revuelta, J.L. (2020). Multiplex genome editing in Ashbya gossypii using CRISPR‐Cpf1. New Biotechnology 57: 29–33.
63 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816–821.
64 Kang, B.C., Yun, J.Y., Kim, S.T. et al. (2018). Precision genome engineering through adenine base editing in plants. Nature Plants 4 (7): 427–431.
65 Kaur, K., Tandon, H., Gupta, A.K., and Kumar, M. (2015). CrisprGE: a central hub of CRISPR/Cas‐based genome editing. Database 2015: bav055.
66 Kim, H. and Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15 (5): 321–334.
67 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93 (3): 1156–1160.
68 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research 19 (7): 1279–1288.
69 Kim, D., Kim, J., Hur, J.K. et al. (2016). Genome‐wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology 34 (8): 863.
70 Kim, H.K., Song, M., Lee, J. et al. (2017).