Physikalische Chemie. Peter W. Atkins. Читать онлайн. Newlib. NEWLIB.NET

Автор: Peter W. Atkins
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9783527833184
Скачать книгу
und die Querschnittsfläche gleichermaßen, und beide Effekte heben einander auf.

      Übung 1-2

      Welcher Druck herrscht an der Grundfläche eines flüssigkeitsgefüllten Zylinders der Länge l mit einem Neigungswinkel θ zur Senkrechten (siehe Skizze (1)).

      [p = ρgl cos θ]

      Zur Gasdruckmessung in Apparaturen verwendet man Manometer; in der Regel Geräte, deren elektrische Eigenschaften vom Druck abhängen. Ein Beispiel ist das Bayard-Alpert-Ionisationsmanometer; hier werden die Moleküle im Gas ionisiert, der Ionenstrom gemessen und daraus der Druck ermittelt. Bei einem Kapazitätsmanometer verfolgt man die Auslenkung eines Diaphragmas relativ zu einer unbeweglichen Elektrode über den Effekt dieser Auslenkung auf die elektrische Kapazität der Anordnung. Auch bestimmte Halbleitermaterialien reagieren auf Druckänderungen und werden als Transducer (Energiewandler) in Manometern auf Halbleiterbasis eingesetzt.

      Temperatur

image

      Es ist zweckmäßig, zwei Arten von Wänden zu unterscheiden, durch die die Gegenstände voneinander getrennt sein können: Eine Wand ist diathermisch (Wärme leitend, von griechisch dia, „hindurch“), wenn bei Kontakt zweier Körper mit unterschiedlicher Temperatur eine Zustandsänderung eintritt. Ein Metallbehälter hat z. B. diathermische Wände. Wenn auch bei unterschiedlicher Temperatur der beiden Körper keine Änderung beobachtet wird, heißt die Wand adiabatisch (thermisch isoliert); ein gutes Beispiel hierfür sind die Wände eines Dewargefäßes.

image

       Wenn A im thermischen Gleichgewicht mit B steht und ebenso B mit C, so stehen auch A und C miteinander im thermischen Gleichgewicht.

      Der Nullte Hauptsatz rechtfertigt das Konzept der Temperatur und die Funktion eines Thermometers, eines Geräts zur Temperaturmessung. Dazu nehmen wir an, dass B eine Glaskapillare ist, die eine Flüssigkeit (etwa Quecksilber) enthält, welche sich bei Erwärmung sichtbar ausdehnt. Wenn nun B mit A in Kontakt gebracht wird, nimmt die Quecksilbersäule in B eine bestimmte Länge an. Aus dem Nullten Hauptsatz können wir nun Folgendes ableiten: Falls die Quecksilbersäule bei Kontakt von B mit C dieselbe Länge wie beim Kontakt von B mit A behält, tritt keine Zustandsänderung beim Kontakt von A mit C auf – unabhängig von der Zusammensetzung der beiden Systeme. Somit ist die Länge des Quecksilberfadens ein Maß für die Temperatur von A bzw. C.

       Hinweis

      Für den Nullpunkt der Temperatur auf der thermodynamischen Skala schreiben wir T = 0, nicht T = 0 K. Es handelt sich um eine absolute Skala; die niedrigste Temperatur ist immer null, ungeachtet der Skalenteilung (genau wie wir p = 0 für den Nullpunkt des Drucks schreiben, ohne eine Einheit wie Pa oder bar anzugeben.) Da die Celsiusskala nicht absolut ist, müssen wir hingegen 0 °C schreiben.

      In der Frühzeit der Temperaturmessung (und in der Praxis auch heute) wurden Temperaturen mit Bezug auf die Länge einer Flüssigkeitssäule festgelegt: Die Längendifferenz, die sich ergab, wenn das Thermometer erst in schmelzendes Eis und dann in siedendes Wasser getaucht wurde, teilte man in 100 „Grad“-Schritte und bezeichnete den tiefsten Punkt mit 0. So erhielt man die Celsius-Temperaturskala. Celsiustemperaturen (Symbol θ )werden in Grad Celsius (°C) angegeben. Da sich verschiedene Flüssigkeiten bei der Ausdehnung unterschiedlich verhalten, können Thermometer aus verschiedenen Materialien geringfügig verschiedene Temperaturen anzeigen. Eine stoffunabhängige absolute Temperaturskala kann man mithilfe des Drucks eines idealen Gases gewinnen. Sie entspricht, wie wir sehen werden, der thermodynamischen Temperaturskala, die wir in Abschnitt 3.1.2 einführen werden; wir verwenden schon ab jetzt diesen Namen, um Verwechslungen zu vermeiden. Auf dieser thermodynamischen Temperaturskala werden Temperaturen mit T bezeichnet und üblicherweise in Kelvin (K, nicht °K!) angegeben. Die exakte Beziehung zwischen thermodynamischer und Celsius-Temperatur ist

      Diese Beziehung ist die heute gebräuchliche Definition der Celsius-Temperaturskala anhand der grundlegenderen Kelvinskala. Es folgt unmittelbar, dass eine Temperaturdifferenz von 1 °C einer Differenz von 1 K entspricht.

       Hinweis

      Wenn in einer Gleichung Einheiten angegeben werden müssen, ist das korrekte, jede Mehrdeutigkeit vermeidende Vorgehen, dimensionslose Zahlen der Form (physikalische Größe)/(Einheit) zu verwenden wie (25.00 °C)/°C = 25.00 in dem angegebenen praktischen Beispiel. Die Einheiten werden wie Zahlen multipliziert und gekürzt.

      Ein praktisches Beispiel

image

      Die