Open and Toroidal Electrophoresis. Tarso B. Ledur Kist. Читать онлайн. Newlib. NEWLIB.NET

Автор: Tarso B. Ledur Kist
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119539247
Скачать книгу
suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

       Library of Congress Cataloging-in-Publication Data Applied for

      HB ISBN: 9781119539407

      Cover Design: Wiley

      Cover Image: Courtesy of Tarso B. Ledur Kist

      The main goal of this book is to present electrokinetic based separation techniques in a didactic and concise manner, making the content accessible to the broadest possible audience (students, users, and researchers). In addition, this book provides the exact expressions of separation efficiency, resolution, peak capacity, and many other performance indicators. Appropriate illustrations are presented, and the underlying fundamental phenomena and models are discussed in a logical order instead of in a chronological order. Chemical and physical insights are also developed by emphasizing the microscopic scenarios of the molecular processes involved.

      Important mathematical relationships are given to aid users with their practical applications and theoretical studies of the dozens of separation modes performed in the three most common platforms: capillaries, microchips, and slabs. The two most important layouts of these three platforms are also described and compared: the conventional open layout, with an inlet and an outlet for the samples, and the toroidal or closed loop layout, where samples run in a quasi-continuous circulating mode until the desired resolution is obtained.

      Motivation to write this book came from twenty years of teaching both undergraduate and graduate students, as well as from stimulating collaborations with so many bright and talented colleagues, to all of whom I am deeply grateful.

      The author is thankful to Dr C. Heller, Professor J. H. Z. dos Santos, Professor C. L. Petzhold, Professor A. Manz, Professor Bingcheng Lin, Professor B. Gaš, Professor J. W. Jorgenson, and Professor H-P. Grieneisen for their helpful discussions and suggestions. Additionally, the author is grateful to E. J. M. Bradley for proofreading the manuscript. Finally, it must be mentioned that these people should not be blamed for the errors the author insisted on keeping in this book!

      January, 2020

       Tarso B. Ledur Kist

       Porto Alegre

      Toroidal electrokinetic separation techniques are based on separation tracks with toroidal layouts. These techniques can produce analytical and preparative separations with unprecedented high resolutions and peak capacities. Runs are performed in a closed loop with a quasi-continuous circulating mode of migration until the desired resolutions are achieved. They are different to the commonly used open layouts, where runs are always limited in either space (with an inlet and an outlet) or time (with a start and a finish line) and either electroosmosis or a pressure driven counter-flow must be applied to increase the resolving power. Toroidal layouts allow much more freedom in the use of the operating conditions, as will be described and compared in the following chapters.

      Electrokinetic phenomena is a class of phenomena that includes electrophoresis, electroosmosis, streaming current and potential, surface conductivity, dielectric dispersion, and electroacoustics. The phenomena occur in liquid solutions (some of them can also occur in gels) containing electrolytes, and are intimately related to the theory of electromagnetism and classical fluid dynamics. However, they are distinct from electrochemistry related phenomena as they focus on the transport of charged and uncharged entities instead of on the chemical reactions, which involve the movement of electrical charges between electrodes and electrolytes.

      The categorization of the dozens of electrokinetic separation techniques (ESTs) is highly necessary as they have important theoretical and practical differences. Consequently, the categorization of these techniques into three levels is proposed as it produces a simple and practical nomenclature. This categorization begins with the first level: the layout of the separation path, which can be either open (O) or toroidal (T) in shape (as previously described).

      The second level of categorization is the platform where the ESTs are performed. Capillary (C), microchip (M) and slab (S) platforms are the most common. Flexible fused-silica microtubes, popularly known as capillaries, are already widely used to achieve high separation efficiencies in the open layout and are also starting to be used in the toroidal layout. Cylindrical capillaries are the most frequently used, but square and rectangular capillaries are also available. In the case of microchips, microchannels are etched onto slides of polymeric materials, glasses, fused silica (amorphous), and quartz (crystalline). They show great promise for the development of novel, multifunctional microstructures. The use of 3D printing allows an even larger number of techniques to be performed on this platform, both for basic research and an uncountable number of applications. The slab platform is normally made of a slab of gel, cellulose acetate, nylon membrane, or another porous substance. These macroscopic supports always have an anti-convective effect that prevents the sample from spreading due to convection. In addition, they usually play additional, well established, roles in the separation mechanisms.

      The third and lowest level of categorization is the separation mode. This refers to the underlying molecular mechanism used to promote the separation of the analytes of interest, both among themselves and from any undesired sample interferant. The modes include affinity electrophoresis (AE), electrochromatography (EC), end-labeled free-solution electrophoresis (ELFSE), free-solution electrophoresis (FSE), isoelectric focusing (IEF), isotachophoresis (ITP), microemulsion electrokinetic chromatography (MEEKC), micellar electrokinetic chromatography (MEKC), and sieving electrophoresis (SE), to mention only a few. It is interesting to note that this nomenclature is currently normally used for the separation modes, as a result of the recommendations made by IUPAC.


e-mail: [email protected]

Layout Platform Separation mode
(1) Open (1) Capillary (1) Affinity electrophoresis