Конечное множество можно задать простым перечислением его элементов. Для этого принята следующая форма записи: R={а, б, в, г, д, е, ё, ж, з, и, й, к, л, м, н, о, п, р, с, т, у, ф, х, ц, ч, ш, щ, ъ, ы, ь, э, ю, я}.
Так мы задали множество букв русского алфавита. Определим подобным образом еще несколько конечных множеств, состоящих из тех же букв и собранных по некоторым индивидуальным для каждого множества признакам:
G={а, е, ё, и, о, у, ы, э, ю, я},
S={б, в, г, д, ж, з, к, л, м, н, п, р, с, т, ф, х, ц, ч, ш, щ},
P={й},
Z={ъ, ь},
D={б, в, г, д, ж, з, л, м, н, р},
T={к, п, с, т, ф, х, ц, ч, ш, щ},
X={ж, ш, ч, щ}.
Другой способ задания множества – описательный. Нужно сформулировать предложение, которое описывает данное множество так, что его нельзя спутать ни с каким другим и о любом объекте можно точно сказать принадлежит ли он этому множеству или нет. Тогда перечисленные выше множества букв будут определяться так:
G – множество гласных букв русского алфавита,
S – множество согласных букв,
P – множество полугласных букв,
Z – множество букв, которым не соответствует никакого звука в устной речи, иначе говоря – множество знаков,
D – множество звонких согласных,
T – множество глухих согласных,
X – множество шипящих согласных.
Бесконечное множество нельзя задать перечислением всех его элементов, но часто можно описать их свойства. Встречаются и конечные множества с той же степенью неопределенности. Например, до сих пор ученым не удалось расшифровать письменность острова Пасхи. До нас дошли несколько десятков табличек, покрытых рисуночными значками, вырезанными зубом акулы по дереву. Эти письмена аборигены называют кохау ронго-ронго – «говорящее дерево». Множество знаков-иероглифов в письменности острова Пасхи, можно определить этим предложением, но нельзя с уверенностью и точно перечислить, хотя это множество заведомо конечное.
Множества G, S, …, X содержат разное количество элементов и среди них есть одно, для которого используется специальное название. Множество, содержащее единственный элемент называется одноэлементным или единичным множеством. Речь идет о множестве P={й}, которое содержит единственную букву, обозначающую полугласный звук, то есть звук не образующий слога. Можно задать и пустое множество, в котором не содержится ни одного элемента. Так как это множество