Вывод здесь такой: обобщенный причинный закон (5) как закон нелинейного роста имеет ограниченное применение и годится лишь для описания временно́й динамики изменения численности сосредоточенной, изолированной популяции [12].
Наибольшую общность закону (5) можно придать, добавив в его правую часть дельта функцию Дирака (7), которая описывает акт творения или случайное зарождение жизни в первобытном океане Земли. Это «обобщение», впрочем, не следует воспринимать слишком серьезно.
Частные случаи общего закона
Если взаимодействия между членами популяции отсутствуют и коэффициент естественного прироста равен нулю, т. е., если убрать в правой части уравнения (5) и линейный, и нелинейный член, то получим уравнение (7), в котором разность между числом родившихся и умерших за единицу времени (Р – С)/Δt равна нулю (т. е. прирост за счет рождений равен убыли за счет смертности), и численность популяции остается неизменной.
В более сложном случае при α ≠ 0 и наличии взаимодействий популяционный гомеостаз (N = const) достигается при тех значениях N, которые обращают правую часть уравнения (5) в нуль. Нелинейный член может быть немонотонной функцией численности, и тогда рост будет более сложным. Устойчивый гомеостаз, когда численность популяции остается неизменной или слабо колеблется около положения равновесия, возможен в тех точках гомеостаза, в которых вторая производная от правой части уравнения (5) – отрицательна [11].
Рис. 1. Состояние популяционного гомеостаза.
Экспоненциальный рост возникает при отсутствии взаимодействий между членами популяции, способных оказать влияние на естественный прирост (он был рассмотрен нами ранее). В этом случае в обобщенном уравнении (5) необходимо отбросить нелинейный член F(N).
Рис. 2. Экспоненциальный рост популяции.
Если для некоторой популяции коэффициент рождаемости есть величина постоянная и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим (9). Логистический рост был впервые описан бельгийским математиком Ферхюльстом на примере роста численности населения. Уравнение такого роста – уравнение Ферхюльста – сам Ферхюльст по неизвестным причинам назвал логистическим.
Рис. 3. Логистический рост популяции.
Модель логистического роста, основанная на предположении об убывающей линейной зависимости удельной скорости популяционного роста от численности популяции, является наиболее простой из существующих моделей ограниченного роста.
В этом