Коэффициент рождаемости (P/NΔt) и коэффициент смертности (C/NΔt) могут изменяться со временем в процессе роста популяции, но если при этом их разность будет оставаться неизменной – рост будет экспоненциальным.
Если же это условие будет нарушено – экспоненты не получится; например, если для некоторой популяции коэффициент рождаемости – константа и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим.
Обобщенный закон роста численности изолированной популяции
Каким должен быть закон свободного роста изолированной популяции в условиях среды, свойства которой не меняются и при учете взаимодействия ее членов? Будем считать выполненными все возможные идеализации, рассмотренные нами ранее. Для такой популяции прирост за счет рождаемости, так же как и убыль за счет смертности, возрастает при увеличении ее общей численности.
Поэтому в простейшем случае без учета внутривидовых взаимодействий (тех из них, что влияют на прирост численности) скорость роста должна быть пропорционально общей численности. Поскольку даже и при учете взаимодействий, если их влияние устремить к нулю, обобщенный закон роста должен превращаться в уравнение Мальтуса, то дифференциальное уравнение этого закона должно быть уравнением первого порядка.
Процесс роста численности свободной популяции, т. е. популяции, рост которой никем и никак не регулируется, не зависит (при прочих равных условиях) от того на каком участке шкалы физического времени он наблюдается. Поэтому время как независимая переменная не должно явным образом входить в состав его правой части.
Такие уравнения называются автономными. Структура правой части обобщенного закона должна иметь вид (5): линейный член αN плюс нелинейный F(N), описывающий взаимодействие между членами популяции.
Рис. 1. Обобщенный закон свободного роста изолированной популяции.
Причем значение этой функции при N = 0 должно быть равным нулю: F(0) = 0, т. к. иначе пришлось бы допустить существование составляющей прироста, не зависящей от численности популяции. Так, например, при N = 0, т. е. при полном отсутствии членов популяции, скорость роста была бы не равна нулю. Что противоречит фундаментальному свойству жизни: живое происходит только от живого, и прирост определяется, прежде всего, численностью.
Если все же допустить присутствие аддитивной константы в правой части уравнения (5), то в простейшем случае, если отбросить линейный и нелинейный член и оставить только константу, получим закон линейного роста численности от времени, который не может описывать рост никакой свободно растущей популяции, поскольку прирост здесь является постоянным и никак не