Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:
1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического роста. Поскольку такое в реальности невозможно, да и само наличие таких особых точек на шкале роста должно иметь какое-то объяснение, следует признать, что непрерывная модель степенного роста как процесса с простой преддетерминацией изначально содержит в себе внутренние противоречия.
2. Хотя численность популяции при степенном, так же как и при экспоненциальном росте изменяется по закону геометрической прогрессии, но рост этот происходит на последовательности интервалов времени расширяющихся (параболический рост) или сжимающихся (гиперболический рост) по закону прогрессии от/к особой точки/е этого роста.
Это увеличение (уменьшение) времени удвоения численности популяции выполняется при отсчете времени (прямом или обратном) только от этой точки и ни от какой другой, что еще раз подчеркивает ее выделенность. Такой рост, в отличие от экспоненциального роста, является существенно неоднородным во времени процессом. Если взять два равных отрезка времени, различающихся своим положением на шкале роста, то рост численности, в том числе и размножение каждой единичной особи популяции, будет происходить на них совершенно по разному.
Рассмотрим, например, простой гиперболический рост на последовательности отрезков времени, сокращающихся по закону прогрессии со знаменателем 1/2 (так росло население Земли). На каждом таком отрезке время удвоения численности уменьшается вдвое по сравнению с предыдущим, что говорит о том, что особи популяции будут здесь более плодовитыми и/или потери от смертности меньшими[56].
Что совершенно немыслимо для любой популяции, когда-либо существовавшей в природе, время удвоения численности которой в благоприятных и неизменных условиях есть всегда величина постоянная. Поскольку это время по каким-то причинам при каждом таком удвоении численности уменьшается ровно в два раза, то это должно иметь какое-то объяснение; иначе говоря, закон степенного роста, в отличие от закона экспоненциального роста, законом причинно-самодостаточным уже не является. Что это означает?
Это означает то, что в отличие от естественного экспоненциального роста, причина которого заключена в положительной обратной связи между численностью и ее естественным приростом (природу которой не нужно никак дополнительно