Поэтому в математическом моделировании существует золотая середина степени усложнения. В математической экологии эффективны простые модели с большим количеством идеализаций. Рассмотрим идеализации для модели роста изолированной популяции, т. е. такой популяции, взаимодействия в которой возможны только между представителями данной популяции [12]:
1. Постоянство внешних условий, т. к. прежде чем исследовать роль внешних воздействий следует проанализировать свойства идеальной, изолированной популяции, на динамику численности которой влияют лишь биотические факторы, причем только те из них, что связаны с внутривидовой деятельностью. Под постоянством внешних по отношении к растущей популяции условий будем понимать также и независимость роста (при прочих равных условиях) от того, на каком участке шкалы физического времени он наблюдается. В уравнениях такого роста не должно, следовательно, явным образом присутствовать время, т. е. они должны быть автономными.
2. Целочисленное число особей популяции заменяется для удобства на непрерывную, действительную величину.
3. Рассматриваемая популяция считается однородной, т. е. полностью пренебрегается ее половой, возрастной, генотипической и какой-либо другой структурированностью[55].
4. Рост численности любой популяции есть, строго говоря, случайный процесс, который должен описываться на языке теории вероятностей. Но при исследовании изменения численности популяций с большим числом членов естественно описывать эти изменения на языке средних величин.
5. В случае неперекрывающихся поколений в дискретных моделях принимается синхронное размножение у всех организмов при достижении определенного возраста. Что хотя и не соответствует действительности, позволяет упростить математический аппарат, причем без отрицательного влияния на результат. Момент появления новой особи в непрерывных моделях считается равномерно распределенным на отрезке времени, равном среднему времени жизни особи.
6. В случае перекрывающихся поколений скорость изменения численности может определяться численностью не в текущий, а в некоторый предшествующий момент времени. Динамика изменения численности описывается здесь уравнениями с запаздывающим аргументом. Такое запаздывание, в случае если оно сравнимо или превосходит характерное время системы, может приводить к колебаниям численности и даже к резонансам: колебаниям с нарастающей амплитудой. Пренебрежение таким запаздыванием – еще одна часто принимаемая идеализация.
7. Исследуемая система предполагается либо локальной, т. е. имеющей достаточно малые размеры (для таких систем понятия численности популяции и ее плотности являются синонимами), либо постулируется полное перемешивание, когда особь за время жизни успевает побывать на всей территории обитания популяции. Для человеческого