Правда, Уорвик[51] (Kevin Warwick) не предлагает никакого правдоподобного механизма для «обмена мыслительными сигналами» в качестве интерфейса для взаимодействия с машинами. Конечно, он совершенно прав в том, что информацию головному мозгу можно передавать электронным образом. Именно это и делают мои кохлеарные импланты. Я знаю, как это – слышать звуки своими собственными ушами, и я понимаю отличия в восприятии их посредством встроенных «электронных ушей». Теперь, когда я привык к последним, могу заявить: они дают мне практически те же ощущения, что и обычные органы слуха. По своему устройству и принципам работы системы друг от друга отличаются, но конечные результаты их действия очень похожи: в слуховой зоне коры мозга возбуждаются определенные группы нейронов, а в сознании возникает чувство понимания. Электронное слышание остается слышанием именно потому, что ничем иным оно быть не может.
Однако Уорвик имеет в виду отнюдь не ту информацию, которую дают нам органы чувств. Он говорит о коммуникации, а это совершенно другое дело. Для общения требуется куда больше входящей и исходящей информации, чем поступает в мозг через кохлеарный имплант. Кроме того, интерпретироваться данные должны на более высоком уровне ментальной деятельности. И кто в мире на это способен?
Я должен во всем этом разобраться. Мне показалась интересной одна идея, которую выдвинул Родольфо Линас, нейробиолог из университета Нью-Йорка[52]. От нее просто волосы дыбом встают. Линас предложил инженерам сделать из тысяч проводов такой тонкий кабель, чтобы его можно было ввести в бедренную артерию в районе паховой области, а затем по кровяному руслу провести к головному мозгу – как при ангиографии. Достигнув последнего, провода кабеля должны распределиться таким образом, чтобы их концы попали в капилляры. В итоге каждый провод сможет снимать возбуждение соответствующего нейрона, а также изменять оное, передавая ему электрические импульсы.
Возможно, вы не поверите, что в капиллярах имеется достаточно места, однако оно есть. На иллюстрации видно, что диаметр каждого проводка – менее одного микрона (миллионной доли метра), то есть существенно меньше, чем просвет самого капилляра. Сотрудники лаборатории, которой руководит Линас, показали, что, в принципе, сделать все можно. Они вводили платиновые нанопровода в капилляры выбранных в качестве лабораторных образцов тканей и регистрировали возбуждение прилежащих нейронов[53]. Заряд быстро распределялся, и теперь исследователи надеются