Man and Nature; Or, Physical Geography as Modified by Human Action. George P. Marsh. Читать онлайн. Newlib. NEWLIB.NET

Автор: George P. Marsh
Издательство: Bookwire
Серия:
Жанр произведения: Зарубежная прикладная и научно-популярная литература
Год издания: 0
isbn: 4057664651518
Скачать книгу
falls of rain and snow, and unusual floods or droughts. Our knowledge of the meteorological condition of the earth, at any period more than two centuries before our own time, is derived from these imperfect details, from the vague statements of ancient historians and geographers in regard to the volume of rivers and the relative extent of forest and cultivated land, from the indications furnished by the history of the agriculture and rural economy of past generations, and from other almost purely casual sources of information.

      Among these latter we must rank certain newly laid open fields of investigation, from which facts bearing on the point now under consideration have been gathered. I allude to the discovery of artificial objects in geological formations older than any hitherto recognized as exhibiting traces of the existence of man; to the ancient lacustrine habitations of Switzerland, containing the implements of the occupants, remains of their food, and other relics of human life; to the curious revelations of the Kjökkenmöddinger, or heaps of kitchen refuse, in Denmark, and of the peat mosses in the same and other northern countries; to the dwellings and other evidences of the industry of man in remote ages sometimes laid bare by the movement of sand dunes on the coasts of France and of the North Sea; and to the facts disclosed on the shores of the latter, by excavations in inhabited mounds which were, perhaps, raised before the period of the Roman Empire. These remains are memorials of races which have left no written records, because they perished before the historical period of the countries they occupied began. The plants and animals that furnished the relics found in the deposits were certainly contemporaneous with man; for they are associated with his works, and have evidently served his uses. In some cases, the animals belonged to species well ascertained to be now altogether extinct; in some others, both the animals and the vegetables, though extant elsewhere, have ceased to inhabit the regions where their remains are discovered. From the character of the artificial objects, as compared with others belonging to known dates, or at least to known periods of civilization, ingenious inferences have been drawn as to their age; and from the vegetation, remains of which accompany them, as to the climates of Central and Northern Europe at the time of their production.

      There are, however, sources of error which have not always been sufficiently guarded against in making these estimates. When a boat, composed of several pieces of wood fastened together by pins of the same material, is dug out of a bog, it is inferred that the vessel, and the skeletons and implements found with it, belong to an age when the use of iron was not known to the builders. But this conclusion is not warranted by the simple fact that metals were not employed in its construction; for the Nubians at this day build boats large enough to carry half a dozen persons across the Nile, out of small pieces of acacia wood pinned together entirely with wooden bolts. Nor is the occurrence of flint arrow heads and knives, in conjunction with other evidences of human life, conclusive proof as to the antiquity of the latter. Lyell informs us that some Oriental tribes still continue to use the same stone implements as their ancestors, "after that mighty empires, where the use of metals in the arts was well known, had flourished for three thousand years in their neighborhood;"[9] and the North American Indians now manufacture and use weapons of stone, and even of glass, chipping them in the latter case out of the bottoms of thick bottles, with great facility.[10]

      We may also be misled by our ignorance of the commercial relations existing between savage tribes. Extremely rude nations, in spite of their jealousies and their perpetual wars, sometimes contrive to exchange the products of provinces very widely separated from each other. The mounds of Ohio contain pearls, thought to be marine, which must have come from the Gulf of Mexico, or perhaps even from California, and the knives and pipes found in the same graves are often formed of far-fetched material, that was naturally paid for by some home product exported to the locality whence the material was derived. The art of preserving fish, flesh, and fowl by drying and smoking is widely diffused, and of great antiquity. The Indians of Long Island Sound are said to have carried on a trade in dried shell fish with tribes residing very far inland. From the earliest ages, the inhabitants of the Faroe and Orkney Islands, and of the opposite mainland coasts, have smoked wild fowl and other flesh. Hence it is possible that the animal and the vegetable food, the remains of which are found in the ancient deposits I am speaking of, may sometimes have been brought from climates remote from that where it was consumed.

      The most important, as well as the most trustworthy conclusions with respect to the climate of ancient Europe and Asia, are those drawn from the accounts given by the classical writers of the growth of cultivated plants; but these are by no means free from uncertainty, because we can seldom be sure of an identity of species, almost never of an identity of race or variety, between vegetables known to the agriculturists of Greece and Rome and those of modern times which are thought most nearly to resemble them. Besides this, there is always room for doubt whether the habits of plants long grown in different countries may not have been so changed by domestication that the conditions of temperature and humidity which they required twenty centuries ago were different from those at present demanded for their advantageous cultivation.[11]

      Even if we suppose an identity of species, of race, and of habit to be established between a given ancient and modern plant, the negative fact that the latter will not grow now where it flourished two thousand years ago does not in all cases prove a change of climate. The same result might follow from the exhaustion of the soil,[12] or from a change in the quantity of moisture it habitually contains. After a district of country has been completely or even partially cleared of its forest growth, and brought under cultivation, the drying of the soil, under favorable circumstances, goes on for generations, perhaps for ages.[13] In other cases, from injudicious husbandry, or the diversion or choking up of natural watercourses, it may become more highly charged with humidity. An increase or diminution of the moisture of a soil almost necessarily supposes an elevation or a depression of its winter or its summer heat, and of its extreme, if not of its mean annual temperature, though such elevation or depression may be so slight as not sensibly to raise or lower the mercury in a thermometer exposed to the open air. Any of these causes, more or less humidity, or more or less warmth of soil, would affect the growth both of wild and of cultivated vegetation, and consequently, without any appreciable change in atmospheric temperature, precipitation, or evaporation, plants of a particular species might cease to be advantageously cultivated where they had once been easily reared.[14] We are very imperfectly acquainted with the present mean and extreme temperature, or the precipitation and the evaporation of any extensive region, even in countries most densely peopled and best supplied with instruments and observers. The progress of science is constantly detecting errors of method in older observations, and many laboriously constructed tables of meteorological phenomena are now thrown aside as fallacious, and therefore worse than useless, because some condition necessary to secure accuracy of result was neglected, in obtaining the data on which they were founded.

      To take a familiar instance: it is but recently that attention has been drawn to the great influence of slight changes of station upon the results of observations of temperature and precipitation. A thermometer removed but a few hundred yards from its first position differs not unfrequently five, sometimes even ten degrees in its readings; and when we are told that the annual fall of rain on the roof of the observatory at Paris is two inches less than on the ground by the side of it, we may see that the level of the rain-gauge is a point of much consequence in making estimates from its measurements. The data from which results have been deduced with respect to the hygrometrical and thermometrical conditions, the climate in short, of different countries, have very often been derived from observations at single points in cities or districts separated by considerable distances. The tendency of errors and accidents to balance each other authorizes us, indeed, to entertain greater confidence than we could otherwise feel in the conclusions drawn from such tables; but it is in the highest degree probable that they would be much modified by more numerous series of observations, at different stations within narrow limits.[15]

      There is one branch of research which is of the utmost importance in reference to these questions, but which, from the great difficulty of direct observation upon it, has been less successfully studied than almost any other problem of physical science. I refer to the proportions between precipitation, superficial drainage, absorption, and evaporation. Precise actual measurement of these quantities upon even a single acre of ground is impossible; and in all cabinet experiments on the subject, the conditions of the surface observed are so different from