Death lives where power lives unused.[6]
Self is the schoolmaster whose lessons are best worth his wages; and since the subject I am considering has not yet become a branch of formal instruction, those whom it may interest can, fortunately, have no pedagogue but themselves. To the natural philosopher, the descriptive poet, the painter, and the sculptor, as well as to the common observer, the power most important to cultivate, and, at the same time, hardest to acquire, is that of seeing what is before him. Sight is a faculty; seeing, an art. The eye is a physical, but not a self-acting apparatus, and in general it sees only what it seeks. Like a mirror, it reflects objects presented to it; but it may be as insensible as a mirror, and it does not necessarily perceive what it reflects.[7] It is disputed whether the purely material sensibility of the eye is capable of improvement and cultivation. It has been maintained by high authority, that the natural acuteness of none of our sensuous faculties can be heightened by use, and hence that the minutest details of the image formed on the retina are as perfect in the most untrained, as in the most thoroughly disciplined organ. This may well be doubted, and it is agreed on all hands that the power of multifarious perception and rapid discrimination may be immensely increased by well-directed practice.[8] This exercise of the eye I desire to promote, and, next to moral and religious doctrine, I know no more important practical lessons in this earthly life of ours—which, to the wise man, is a school from the cradle to the grave—than those relating to the employment of the sense of vision in the study of nature.
The pursuit of physical geography, embracing actual observation of terrestrial surface, affords to the eye the best general training that is accessible to all. The majority of even cultivated men have not the time and means of acquiring anything beyond a very superficial acquaintance with any branch of physical knowledge. Natural science has become so vastly extended, its recorded facts and its unanswered questions so immensely multiplied, that every strictly scientific man must be a specialist, and confine the researches of a whole life within a comparatively narrow circle. The study I am recommending, in the view I propose to take of it, is yet in that imperfectly developed state which allows its votaries to occupy themselves with such broad and general views as are attainable by every person of culture, and it does not now require a knowledge of special details which only years of application can master. It may be profitably pursued by all; and every traveller, every lover of rural scenery, every agriculturist, who will wisely use the gift of sight, may add valuable contributions to the common stock of knowledge on a subject which, as I hope to convince my readers, though long neglected, and now inartificially presented, is not only a very important, but a very interesting field of inquiry.
Cosmical and Geological Influences.
The revolutions of the seasons, with their alternations of temperature and of length of day and night, the climates of different zones, and the general condition and movements of the atmosphere and the seas, depend upon causes for the most part cosmical, and, of course, wholly beyond our control. The elevation, configuration, and composition of the great masses of terrestrial surface, and the relative extent and distribution of land and water, are determined by geological influences equally remote from our jurisdiction. It would hence seem that the physical adaptation of different portions of the earth to the use and enjoyment of man is a matter so strictly belonging to mightier than human powers, that we can only accept geographical nature as we find her, and be content with such soils and such skies as she spontaneously offers.
Geographical Influence of Man.
But it is certain that man has done much to mould the form of the earth's surface, though we cannot always distinguish between the results of his action and the effects of purely geological causes; that the destruction of the forests, the drainage of lakes and marshes, and the operations of rural husbandry and industrial art have tended to produce great changes in the hygrometric, thermometric, electric, and chemical condition of the atmosphere, though we are not yet able to measure the force of the different elements of disturbance, or to say how far they have been compensated by each other, or by still obscurer influences; and, finally, that the myriad forms of animal and vegetable life, which covered the earth when man first entered upon the theatre of a nature whose harmonies he was destined to derange, have been, through his action, greatly changed in numerical proportion, sometimes much modified in form and product, and sometimes entirely extirpated.
The physical revolutions thus wrought by man have not all been destructive to human interests. Soils to which no nutritious vegetable was indigenous, countries which once brought forth but the fewest products suited for the sustenance and comfort of man—while the severity of their climates created and stimulated the greatest number and the most imperious urgency of physical wants—surfaces the most rugged and intractable, and least blessed with natural facilities of communication, have been made in modern times to yield and distribute all that supplies the material necessities, all that contributes to the sensuous enjoyments and conveniences of civilized life. The Scythia, the Thule, the Britain, the Germany, and the Gaul which the Roman writers describe in such forbidding terms, have been brought almost to rival the native luxuriance and easily won plenty of Southern Italy; and, while the fountains of oil and wine that refreshed old Greece and Syria and Northern Africa have almost ceased to flow, and the soils of those fair lands are turned to thirsty and inhospitable deserts, the hyperborean regions of Europe have conquered, or rather compensated, the rigors of climate, and attained to a material wealth and variety of product that, with all their natural advantages, the granaries of the ancient world can hardly be said to have enjoyed.
These changes for evil and for good have not been caused by great natural revolutions of the globe, nor are they by any means attributable wholly to the moral and physical action or inaction of the peoples, or, in all cases, even of the races that now inhabit these respective regions. They are products of a complication of conflicting or coincident forces, acting through a long series of generations; here, improvidence, wastefulness, and wanton violence; there, foresight and wisely guided persevering industry. So far as they are purely the calculated and desired results of those simple and familiar operations of agriculture and of social life which are as universal as civilization—the removal of the forests which covered the soil required for the cultivation of edible fruits, the drying of here and there a few acres too moist for profitable husbandry, by draining off the surface waters, the substitution of domesticated and nutritious for wild and unprofitable vegetable growths, the construction of roads and canals and artificial harbors—they belong to the sphere of rural, commercial, and political economy more properly than to geography, and hence are but incidentally embraced within the range of our present inquiries, which concern physical, not financial balances. I propose to examine only the greater, more permanent, and more comprehensive mutations which man has produced, and is producing, in earth, sea, and sky, sometimes, indeed, with conscious purpose, but for the most part, as unforeseen though natural consequences of acts performed for narrower and more immediate ends.
The exact measurement of the geographical changes hitherto thus effected is, as I have hinted, impracticable, and we possess, in relation to them, the means of only qualitative, not quantitative analysis. The fact of such revolutions is established partly by historical evidence, partly by analogical deduction from effects produced in our own time by operations similar in character to those which must have taken place in more or less remote ages of human action. Both sources of information are alike defective in precision; the latter, for general reasons too obvious to require specification; the former, because the facts to which it bears testimony occurred before the habit or the means of rigorously scientific observation upon any branch of physical research, and especially upon climatic changes, existed.
Uncertainty of our Meteorological Knowledge.
The invention of measures of heat, and of atmospheric moisture, pressure, and precipitation, is extremely recent. Hence, ancient physicists have left us no thermometric or barometric records, no tables of the fall, evaporation, and flow of waters, and even no accurate maps of coast lines and the course of rivers. Their notices of these phenomena are almost wholly confined to excessive and exceptional instances of high or of low temperatures, extraordinary