When he had procured his triangular glass prism, a section of which is shown at ABC, (fig. 1,) he made a hole H in one of his window-shutters, SHT, and having darkened his chamber, he let in a convenient quantity of the sun’s light RR, which, passing through the prism ABC, was so refracted as to exhibit all the different colours on the wall at MN, forming an image about five times as long as it was broad. “It was at first,” says our author, “a very pleasing divertisement to view the vivid and intense colours produced thereby,” but this pleasure was immediately succeeded by surprise at various circumstances which he had not expected. According to the received laws of refraction, he expected the image MN to be circular, like the white image at W, which the sunbeam RR had formed on the wall previous to the interposition of the prism; but when he found it to be no less than five times larger than its breadth, it “excited in him a more than ordinary curiosity to examine from whence it might proceed. He could scarcely think that the various thickness of the glass, or the termination with shadow or darkness, could have any influence on light to produce such an effect: yet he thought it not amiss first to examine those circumstances, and so find what would happen by transmitting light through parts of the glass of divers thicknesses, or through holes in the window of divers bignesses, or by setting the prism without (on the other side of ST), so that the light might pass through it and be refracted before it was terminated by the hole; but he found none of these circumstances material. The fashion of the colours was in all those cases the same.”
Newton next suspected that some unevenness in the glass, or other accidental irregularity, might cause the dilatation of the colours. In order to try this, he took another prism BCB′, and placed it in such a manner that the light RRW passing through them both might be refracted contrary ways, and thus returned by BCB′ into that course RRW, from which the prism ABC had diverted it, for by this means he thought the regular effects of the prism ABC would be destroyed by the prism BCB′, and the irregular ones more augmented by the multiplicity of refractions. The result was, that the light which was diffused by the first prism ABC into an oblong form, was reduced by the second prism BCB′ into a circular one W, with as much regularity as when it did not pass through them at all; so that whatever was the cause of the length of the image MN, it did not arise from any irregularity in the prism.
Our author next proceeded to examine more critically what might be effected by the difference of the incidence of the rays proceeding from different parts of the sun’s disk: but by taking accurate measures of the lines and angles, he found that the angle of the emergent rays should be 31 minutes equal to the sun’s diameter, whereas the real angle subtended by MN at the hole H was 2° 49′. But as this computation was founded on the hypothesis, that the sine of the angle of incidence was proportional to the sine of the angle of refraction, which from his own experience he could not imagine to be so erroneous as to make that angle but 31′, which was in reality 2° 49′, yet “his curiosity caused him again to take up his prism” ABC, and having turned it round in both directions, so as to make the rays RR fall both with greater and with less obliquity upon the face AC, he found that the colours on the wall did not sensibly change their place; and hence he obtained a decided proof that they could not be occasioned by a difference in the incidence of the light radiating from different parts of the sun’s disk.
Newton then began to suspect that the rays, after passing through the prism, might move in curve lines, and, in proportion to the different degrees of curvature, might tend to different parts of the wall; and this suspicion was strengthened by the recollection that he had often seen a tennis-ball struck with an oblique racket describe such a curve line. In this case a circular and a progressive motion is communicated to the ball by the stroke, and in consequence of this, the direction of its motion was curvilineal, so that if the rays of light were globular bodies, they might acquire a circulating motion by their oblique passage out of one medium into another, and thus move like the tennis-ball in a curve line. Notwithstanding, however, “this plausible ground of suspicion,” he could discover no such curvature in their direction, and, what was enough for his purpose, he observed that the difference between the length MN of the image, and the diameter of the hole H, was proportional to their distance HM, which could not have happened had the rays moved in curvilineal paths.
These different hypotheses, or suspicions, as Newton calls them, being thus gradually removed, he was at length led to an experiment which determined beyond a doubt the true cause of the elongation of the coloured image. Having taken a board with a small hole in it, he placed it behind the face BC of the prism, and close to it, so that he could transmit through the hole any one of the colours in MN, and keep back all the rest. When the hole, for example, was near C, no other light but the red fell upon the wall at N. He then placed behind N another board with a hole in it, and behind this board he placed another prism, so as to receive the red light at N, which passed through this hole in the second board. He then turned round the first prism ABC so as to make all the colours pass in succession through these two holes, and he marked their places on the wall. From the variation of these places, he saw that the red rays at N were less refracted by the second prism than the orange rays, the orange less than the yellow, and so on, the violet being more refracted than all the rest.
Hence he drew the grand conclusion, that light was not homogeneous, but consisted of rays, some of which were more refrangible than others.
As soon as this important truth was established, Sir Isaac saw that a lens which refracts light exactly like a prism must also refract the differently coloured rays with different degrees of force, bringing the violet rays to a focus nearer the glass than the red rays. This is shown in fig. 2, where LL is a convex lens, and S, L, SL rays of the sun falling upon it in parallel directions. The violet rays existing in the white light SL being more refrangible than the rest, will be more refracted or bent, and will meet at V, forming there a violet image of the sun. In like manner the yellow rays will form an image of the sun at Y, and so on, the red rays, which are the least refrangible, being brought to a focus at R, and there forming a red image of the sun.
Fig. 2.
Hence, if we suppose LL to be the object-glass of a telescope directed to the sun, and MM an eye-glass through which the eye at E sees magnified the image or picture of the sun formed by LL, it cannot see distinctly all the different images between R and V. If it is adjusted so as to see distinctly the yellow image at Y, as it is in the figure, it will not see distinctly either the red or violet images, nor indeed any of them but the yellow one. There will consequently be a distinct yellow image, with indistinct images of all the other colours, producing great confusion and indistinctness of vision. As soon as Sir Isaac perceived this result of his discovery, he abandoned his attempts to improve the refracting telescope, and took into consideration the principle of reflection; and as he found that rays of all colours were reflected regularly, so that the angle of reflection was equal to the angle of incidence, he concluded that, upon this principle, optical instruments might be brought to any degree of perfection imaginable, provided a reflecting substance could be found which could polish as finely as glass, and reflect as much light as glass transmits, and provided a method of communicating to it a parabolic figure could be obtained. These difficulties, however, appeared to him very great, and he even thought them insuperable when he considered that, as any irregularity in a reflecting surface makes the rays deviate five or six times more from their true path than similar irregularities in a refracting surface, a much greater degree of nicety would be required in figuring reflecting specula than refracting lenses.
Such was the progress of Newton’s optical discoveries, when he was forced to quit Cambridge in 1666 by the plague which then desolated England, and more than two years elapsed before he proceeded any farther. In 1668 he resumed the inquiry, and having thought of a delicate method of polishing, proper for metals, by which, as he conceived, “the figure would be corrected to the last,” he began to put this method to the test of experiment. At this time he was acquainted with the proposal of Mr. James Gregory, contained in his Optica Promota, to construct a reflecting telescope with two concave specula, the largest of which had a hole in the middle of the larger speculum, to transmit the light to an eye-glass;11 but he conceived