The Animal Parasites of Man. Max Braun. Читать онлайн. Newlib. NEWLIB.NET

Автор: Max Braun
Издательство: Bookwire
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 4057664648037
Скачать книгу
and alterations in the muscular and nervous systems. In the same manner another means of locomotion is lost—the ciliated coat—which is possessed by many permanent parasites during their larval period. To all appearances, this character is not secondary and recently acquired, but represents a primary character inherited from free-living progenitors, and still transmitted to the altered descendants, because of its use during the larval stage (e.g., the larvæ of a great many Trematodes, the oncospheres of some Cestodes). Amongst the retrogressions, the loss of the organs of sense may be mentioned, particularly the eyes, which are still present, not only in the nearest free-living forms but also in the free-living larvæ of true parasites. It is only quite exceptionally that the eyes are subsequently retained, as a rule they are lost. Lastly, in a great many cases the digestive system also disappears, as in parasitic Crustacea, in a few nematodes and trematodes, in all cestodes and Acanthocephala. There remain at most the rudiments of the muscles of the fore-gut, but these are adapted to entirely different uses.

      The new characters which permanent parasites may acquire are, first of all, the remarkably manifold CLASPING and CLINGING ORGANS, which are seldom (as in parasitic Crustacea) directly joined on to already existing structures. In those instances in which organs for the conveyance of food are retained, these likewise frequently undergo transformation, in consequence of the altered food and manner of feeding. Such alterations consist, for instance, in the transformation of a masticating mouth apparatus into the piercing and sucking organs of parasitic insects.

      Hermaphroditism (as in Trematodes, Cestodes, and a few Nematodes) is a further peculiarity of many permanent parasites; moreover, the association in couples that occurs, especially in trematodes, may lead to complete cohesion and, exceptionally, also to re-separation of the sexes. In many cases the females only are parasitic, while the males live a free life, or there may be in addition the so-called complementary males. Occasionally the male alone is parasitic, and in that case lives within the female of the same species, which may live free, like certain Gephyrea (Bonellia); or the female also may be parasitic, as Trichosoma crassicaudum, which lives in the bladder of the sewer rat (Mus decumanus).

      We have numerous proofs that demonstrate how considerably the original features of many parasites have become changed. We need only draw attention to the aforementioned Linguatulidæ, also to many of the parasitic Crustacea belonging to various orders. In all of these a knowledge of the larval stages—in which there is no alteration, or at most only a slight degree of change—serves to determine their systematic position, i.e., the nearest conditions of relationship.

      The most remarkable changes are observed in those groups that contain only a few parasitic members, the majority leading a free life. A striking instance is afforded by a snail, the well-known Entoconcha mirabilis, Müller. This mollusc consists merely of an elongated sac living in a Holothurian (Synapta digitata). It possesses none of the characteristics of either the Gastropoda or any molluscs, and in its interior there is nothing to be observed but the organs of generation and the embryos. Nevertheless, the Entoconcha is decidedly a parasitic snail, as is clearly proved by its larvæ, but it is a snail which, in consequence of parasitism, has lost all the characteristics of molluscs in its mature condition, but still exhibits them in the early stages of development.

      The researches of Lubbock, A. Schneider, and more particularly of R. Leuckart, have shown that what we call Sphærularia bombi is not an animal but merely an organ—the vagina—of a nematode worm. This vagina at first grows, sac-like, from the body of the tiny nematode; it gradually assumes enormous dimensions (2 cm. in length); it contains the sexual organs and parts of the intestine. The remaining portion of the actual animal then becomes small and shrivelled; it may be easily overlooked, being but an appendage to the vagina with its independent existence, and it finally disappears altogether.

      The GREAT FERTILITY of parasites is another of their peculiarities, though this may be also the case to a certain degree with some of the free-living animals, the progeny of which are likewise exposed to enormous destruction.

      More remarkable, however, is the fact that the young of the endoparasites only very exceptionally grow to maturity by the side of their parents. Sooner or later they leave the organ inhabited by the parents, frequently reach the open, and after a shorter or longer period of free existence seek new hosts. During their free period, moreover, a considerable growth may be attained, or metamorphosis may take place, or even multiplication. In the exceptional cases in which the young remain within the same host, they nevertheless usually quit the organ inhabited by the parents. They likewise rarely attain maturity within the host inhabited by the parents, but only, as in other cases, after having gained access to fresh hosts.

      These transmigrations play a very important rôle in the natural history of the internal parasites, but they frequently conceal the cycle of development, for sometimes there are INTERMEDIATE GENERATIONS, which themselves invade intermediate hosts. Even when there are no intermediate generations, THE SYSTEM OF INTERMEDIATE HOSTS is frequently maintained by the endoparasites.

      According to the kind of food ingested by parasites, it has recently become usual to separate the true parasites from those animals that feed on the superfluity of the food of the host, or on products which are no longer necessary to him, and to call the latter MESSMATES or COMMENSALS. As examples, the Ricinidæ are thus designated, because, like actual lice, they dwell among the fur of mammals or the plumage of birds. They do not, however, suck blood, for which their mouth apparatus is unsuited, but subsist on useless epidermic scales. These epizoa, according to J. P. van Beneden, are, to a certain extent, useful to their hosts by removing deciduous materials which under certain circumstances might become harmful to them.1 This investigator, who has contributed so greatly to our knowledge of parasites, assigns the Ricines to the MUTUALISTS, under which term he comprises animals of various species which live in common, and confer certain benefits on one another. The mutualists are usually intimately connected in a mutually advantageous association known as “symbiosis.”2

      Incidental and Pseudo Parasites.—In many cases the parasites are confined to certain hosts, and may therefore be designated as specific to such hosts. Thus, hitherto, Tænia solium and Tænia saginata in their adult condition have only been found in man; Tænia crassicollis only in the cat; Brandesia (Distoma) turgida and Halipegus (Distoma) ovocaudatas only in Rana esculenta, and so forth. In many other cases, however, certain species of parasites are common to several, and sometimes many, species of hosts; Dipylidium caninum is found in the domestic cat as well as in the dog; Fasciola hepatica is found in a large number of herbivorous mammals (nineteen species), Diplodiscus (Amphistomum) subclavatus in numerous urodele and ecaudate amphibia, Holostomum variabile in about twenty-four species of birds, and so on. In these cases the hosts are almost invariably closely related, belonging, as a rule, to the same family or order, or at any rate to the same class. Trichinella spiralis, which is found in man, and in the pig, bear, rat, mouse, cat, fox, badger, polecat and marten, and is capable of being artificially cultivated in the dog, rabbit, sheep, horse, in other