Быть может, скажут, что математики, которые довольствуются этим определением, обмануты словами, что надо было бы точно сказать, что представляет собой каждый из промежуточных членов, выяснить, как надо их вставить, и показать, что эта операция возможна. Но это было бы несправедливо; единственным свойством этих членов, входящим в рассуждения о них[3], является свойство находиться прежде или после таких-то других членов; поэтому оно только и должно входить в их определение.
Таким образом, нечего беспокоиться о том, каким способом следует вставлять промежуточные члены; с другой стороны, никто не усомнится, что эта операция возможна, если только не забывать, что это последнее слово на математическом языке означает просто: свободна от противоречия.
Все же наше определение непрерывности не полно, и я возвращаюсь к нему после этого слишком длинного отступления.
Определение несоизмеримых величин. Математики Берлинской школы, и в частности Кронекер, занимаются построением этой непрерывной последовательности дробных и иррациональных чисел, не пользуясь никаким другим материалом, кроме целого числа. С этой точки зрения математическая непрерывность явится чистым созданием разума, в котором опыт совершенно не участвует.
Понятие рационального числа для них не представляет затруднения; предметом их особенных усилий служит определение несоизмеримого числа. Но прежде чем воспроизвести здесь это определение, я должен сделать одно замечание, чтобы предупредить удивление, которое оно не замедлило бы вызвать у читателей, мало знакомых с математическими обычаями.
Математики изучают не предметы, а лишь отношения между ними; поэтому для них безразлично, будут ли одни предметы замещены другими, лишь бы только не менялись их отношения. Для них не важно материальное содержание; их интересует только форма.
Кто забудет это, тот не поймет, что Дедекинд под именем несоизмеримого числа разумеет простой символ, т. е. нечто, совершенно отличное от представления, которое создают себе обыкновенно относительно величины, считая ее измеряемой, почти осязаемой.
Итак, вот каково определение Дедекинда: соизмеримые числа могут быть бесконечным числом способов распределены на два класса при соблюдении условия, что любое число первого класса должно быть больше любого числа второго класса.
Может