Тогда у С найдутся два элемента A и В, которые необходимо будет считать принадлежащими двум различным непрерывностям; мы узнаем это потому, что нельзя будет найти в С линейный ряд последовательных элементов (каждый из этих элементов не может отличаться от предыдущего; за первый возьмем A, а за последний В), если хоть один из элементов этого ряда не будет неотличим от одного из элементов купюры.
Может, напротив, случиться, что реализация купюры будет недостаточна для подразделения непрерывности С. В целях классификации физических непрерывностей мы должны исследовать, каковы должны быть купюры, которые необходимы для подразделения непрерывности.
Если физическую непрерывность С можно подразделить, реализуя купюру, состоящую из конечного числа различимых один от другого элементов (и не образующую ни одной непрерывности, ни нескольких непрерывностей), то мы скажем, что С есть непрерывность одного измерения.
Если, напротив, можно подразделить С только при помощи купюр, которые сами представляют собой непрерывности, то мы скажем, что С – непрерывность нескольких измерений. Если это достигается купюрами, которые являются непрерывностями одного измерения, то мы скажем, что С имеет два измерения; если достаточно купюр, имеющих два измерения, то мы скажем, что С имеет три измерения, и т. д.
Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.
Математическая непрерывность нескольких измерений. Понятие математической непрерывности n измерений вытекает отсюда совершенно естественно при помощи процесса, вполне подобного тому, который мы изучили в начале этой главы. Точка подобной непрерывности, как известно, представляется нам определенной при помощи системы n различных величин, называемых ее координатами.
Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка В на кривой АВС между точками A и С, и не стараются узнать, равна ли дуга АВ дуге ВС, или она в два раза больше ее. Это – так называемый Analysis Situs.
В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались искусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.
Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование