Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрил? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от основной доли кошелька. Например, сейчас мы вернули бы 95 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Для освоения новой бизнес-модели прогнозы пока еще недостаточно точны.
Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым[13].
Мы не утверждаем, что Amazon будет или должен внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получил патент США на «опережающую доставку»[14]. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «покупка – затем доставка» на «доставка – затем покупка», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет процесс инвестирования. И все это вследствие поворота регулятора точности прогностической машины.
Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.
Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[15], поверните его на 11 часов.
План книги
Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.
В части I мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и