Искусственный интеллект на службе бизнеса. Аджей Агравал. Читать онлайн. Newlib. NEWLIB.NET

Автор: Аджей Агравал
Издательство: Манн, Иванов и Фербер (МИФ)
Серия:
Жанр произведения: Управление, подбор персонала
Год издания: 2018
isbn: 978-5-00117-881-1
Скачать книгу
среде уже больше двадцати лет, однако функционировал он при наличии подробных планов этажей на заводах и складах. С поэтажным планом разработчики программировали своих роботов двигаться согласно логической схеме «если, то»: если перед роботом находится человек, то следует команда «стоп». Если полка пуста, то нужно двигаться к следующей. Обычные улицы оставались для роботов недоступными – в городском пространстве может случиться все что угодно – слишком много возникает условий «если, то», всего не предусмотреть.

      Беспилотный транспорт не будет работать вне полностью предсказуемой и контролируемой среды до тех пор, пока инженеры не переформулируют проблему навигации в прогностическую. Они уже поняли, что вместо того, чтобы просчитывать для машины действия во всех возможных обстоятельствах, необходимо поставить одну прогностическую задачу: что сделал бы человек? И сейчас компании вкладывают миллиарды долларов в обучение машин беспилотному передвижению в неконтролируемой среде, в том числе на городских улицах и шоссе.

      Представьте ИИ сидящим в автомобиле рядом с водителем. Человек проезжает миллионы километров, получает зрительную и звуковую информацию из окружающей среды, обрабатывает ее мозгом и реагирует соответственно: едет прямо или сворачивает, тормозит или разгоняется. Инженеры оснастили ИИ собственными глазами и ушами – датчиками (камерами, радарами, лазерами). Таким образом ИИ собирает поступающие к нему со всех сторон данные, пока человек управляет автомобилем, и одновременно регистрирует реакцию водителя. При совокупности конкретных данных человек поворачивает направо, тормозит или нажимает на газ. Чем дольше ИИ наблюдает за водителем, тем лучше предсказывает его действия, исходя из поступающих данных. ИИ учится водить машину, прогнозируя, как поступил бы человек в соответствующих обстоятельствах.

      И вот что самое главное: когда такая важная вводная, как прогноз, дешевеет, возрастает ценность других вещей. Экономисты называют их «дополняющими факторами». Как падение цены на кофе повысило ценность сахара и сливок, так для беспилотных автомобилей падение цены прогноза повышает ценность датчиков сбора данных окружающей среды. Например, в 2015 году Intel заплатила больше $15 млрд за израильский стартап Mobileye, в первую очередь за технологию сбора данных, позволяющую транспортному средству эффективно распознавать объекты (дорожные знаки, людей и т. д.) и разметку (на улицах и дорогах).

      Дешевея, прогностика станет использоваться чаще, возрастет количество дополняющих ее факторов: данные базовые экономические силы приводят в действие новые возможности, создаваемые прогностическими машинами. На элементарном уровне они снимут с человека задачи прогнозирования и таким образом снизят издержки. По мере распространения машин прогностика изменит и улучшит качество принятия решений. Но в какой-то момент прогностические машины, вероятно, станут столь точными и надежными, что изменят и деятельность организаций. Некоторые