информации сопоставимо с числовыми характеристиками физических объектов на микро- и макроуровнях. В физике при переходе от одного уровня представления к другому кардинально меняется аппарат исследования – статистическая термодинамика, механика, молекулярная физика, представляют собой принципиально различные, но в то же время хорошо согласованные разделы одной науки. В отличие от физики, в вычислительной технике в настоящее время еще не сложились общепринятые теоретические основания, в рамках которых конструктивно объединяются представления, методы анализа и моделирования, подобные соответствующим разделам физики. Классическая теория информации, заложенная Шенноном в 40-х годах и основанная на анализе последовательностей символов, поступающих из источников, данных в приемник, равно как и булева логика, имеющая дело с двоичными, точно заданными значениями, перестают работать в тех случаях, когда речь идет об информационных сообщениях, на много порядков превосходящих по своей мощности возможности приемника. В физике традиционно применяются феноменологические и аналитические методы, которые позволяют легко переходить от профессиональных теоретических моделей к упрощенным представлениям, доступным для широкой публики. Например, такие соотношения как зависимость между температурой t, давлением P и объемом V, в термодинамике, или понятия к. п. д., работа, мощность, энергетические потери, хорошо известные из школьной программы, с достаточной точностью и степенью взаимопонимания согласовывают представления потребителей, инженеров и ученых. Такое масштабирование теоретических и практических знаний является одним из необходимых условий для успешной интеграции научных исследований вместе с проектированием, производством и применением как энергетических, так и информационных машин и систем.
Можно считать, что идеи информационного усиления и нейронного программирования впервые были сформулированы в 1945 году, когда появились две работы, во многом предопределившие развитие вычислительной техники на несколько десятилетий вперед – отчет фон Неймана «First Draft of a Report on the EDVAC» [20] и статья Вэннивера Буша в журнале The Atlantic Monthly – «As We May Think» [4]. Удачно взаимодополняя друг друга, формальные модели элементов и структур автоматических цифровых вычислительных устройств сочетаются в них вместе с эскизами и перспективой развития будущих систем. Функциональная схема ЭВМ фон Неймана и гипертекстовая модель знаний Буша появились в тот момент, когда абстрактные рассуждения о природе вычислений, логике мышления и познании начали находить практическое воплощение в виде реальных информационных систем. В это время завершается латентный этап в истории вычислительной техники и начинается последовательное развитие ее архитектурных направлений, которые на сегодняшний день можно условно разделить на три периода:
Математические расчеты и вычислительные алгоритмы в той