На самом деле ученые рассматривали вероятность существования звезд с плотностью атомного ядра, правда, не всерьез. К 1930-м годам физики знали, что ядро атома состоит из тесно упакованных частиц – протонов и нейтронов. Каждый протон несет единицу положительного заряда, нейтроны, как следует из их названия, электрически нейтральны, однако масса нейтрона примерно равна массе протона. В обычных атомах вроде тех, из которых состоит эта книга, каждое ядро окружено облаком электронов. Каждый электрон несет единицу отрицательного заряда, и электронов в атоме столько же, сколько протонов, так что атом в целом электрически нейтрален.
Но в атоме очень много пустого пространства. Ядро крошечное, но очень плотное, а электронное облако огромное (по сравнению с ядром) и разреженное. Пропорции атома таковы, что ядро в нем – словно песчинка посреди концертного зала. В белых карликах некоторые электроны из-за высокого давления оказываются вырванными из атомов, и ядра плавают в море «обобществленных» электронов, принадлежащих звезде в целом, а не конкретному ядру. Но между ядер все равно остается много свободного пространства, хотя это пространство и содержит электроны. Каждое ядро заряжено положительно, а поскольку одинаковые заряды отталкиваются, ядра держатся на расстоянии друг от друга. Однако квантовая теория учит нас, что все же есть способ сделать звезду плотнее белого карлика. Если звезда под воздействием гравитации еще сильнее сжимается, электроны вынуждены соединяться с протонами, образуя нейтроны. В результате получается звезда, состоящая из одних нейтронов, а их можно упаковать тесно, как протоны и нейтроны в ядре атома. Это и есть нейтронная звезда.
Расчеты показывают, что такое может произойти с любой мертвой звездой с массой более чем на 20 % больше массы Солнца (то есть с массой больше 1,2 массы Солнца). Нейтронная звезда с такой массой упакована в сферу радиусом примерно 10 километров, чуть выше земных гор. Плотность вещества нейтронной звезды составляет 1014 граммов на кубический сантиметр – то есть 1 с 14 нулями, сто тысяч миллиардов. Но даже такой плотный объект – еще не черная дыра, поскольку свет с его поверхности все же может излучаться во Вселенную.
Чтобы сделать из мертвой звезды черную дыру, нужно сокрушить даже нейтроны, и это хорошо понимали теоретики начала 1960-х. Более того, согласно квантовым уравнениям даже нейтроны не выдержат веса мертвой звезды с массой больше трех масс Солнца, к тому же если после взрывной агонии массивной звезды и останется подобный объект, он полностью схлопнется и превратится в математическую точку под названием «сингулярность». Задолго до того, как коллапсирующая звезда достигнет состояния нулевого объема и бесконечной плотности, она искривит пространство-время вокруг себя, и коллапсар окажется отрезан от внешней Вселенной.
На самом деле уравнения говорят, что, если достаточно сильно сжать любое количество вещества, оно поведет себя