Man's Place in the Universe. Alfred Russel Wallace. Читать онлайн. Newlib. NEWLIB.NET

Автор: Alfred Russel Wallace
Издательство: Public Domain
Серия:
Жанр произведения: Физика
Год издания: 0
isbn:
Скачать книгу
outline of the main achievements of this science must now be given.

      The first great discovery made by Spectrum analysis, after the interpretation of the sun's spectrum had been obtained, was, the real nature of the fixed stars. It is true they had long been held by astronomers to be suns, but this was only an opinion of the accuracy of which it did not seem possible to obtain any proof. The opinion was founded on two facts—their enormous distance from us, so great that the whole diameter of the earth's orbit did not lead to any apparent change of their relative positions, and their intense brilliancy which at such distances could only be due to an actual size and splendour comparable with our sun. The spectroscope at once proved the correctness of this opinion. As one after another was examined, they were found to exhibit spectra of the same general type as that of the sun—a band of colours crossed by dark lines. The very first stars examined by Sir William Huggins showed the existence of nine or ten of our elements. Very soon all the chief stars of the heavens were spectroscopically examined, and it was found that they could be classed in three or four groups. The first and largest group contains more than half the visible stars, and a still larger proportion of the most brilliant, such as Sirius, Vega, Regulus, and Alpha Crucis in the Southern Hemisphere. They are characterised by a white or bluish light, rich in the ultra-violet rays, and their spectra are distinguished by the breadth and intensity of the four dark bands due to the absorption of hydrogen, while the various black lines which indicate metallic vapours are comparatively few, though hundreds of them can be discovered by careful examination.

      The next group, to which Capella and Arcturus belong, is also very numerous, and forms the solar type of stars. Their light is of a yellowish colour, and their spectra are crossed throughout by innumerable fine dark lines more or less closely corresponding with those in the solar spectrum.

      The third group consists of red and variable stars, which are characterised by fluted spectra. Such spectra show like a range of Doric columns seen in perspective, the red side being that most illuminated.

      The last group, consisting of few and comparatively small stars, has also fluted spectra, but the light appears to come from the opposite direction.

      These groups were established by Father Secchi, the Roman astronomer, in 1867, and have been adopted with some modifications by Vogel of the Astrophysical Observatory at Potsdam. The exact interpretation of these different spectra is somewhat uncertain, but there can be little doubt that they coincide primarily with differences of temperature and with corresponding differences in the composition and extent of the absorptive atmospheres. Stars with fluted spectra indicate the presence of vapours of the metalloids or of compound substances, while the reversed flutings indicate the presence of carbon. These conclusions have been reached by careful laboratory experiments which are now carried on at the same time as the spectral examination of the stars and other heavenly bodies, so that each peculiarity of their spectra, however puzzling and apparently unmeaning, has been usually explained, by being shown to indicate certain conditions of chemical constitution or of temperature.

      But whatever difficulty there may be in explaining details, there remains no doubt whatever of the fundamental fact that all the stars are true suns, differing no doubt in size, and their stage of development as indicated by the colour or intensity of their light or heat, but all alike possessing a photosphere or light-emitting surface, and absorptive atmospheres of various qualities and density.

      Innumerable other details, such as the often contrasted colours of double stars, the occasional variability of their spectra, their relations to the nebulæ, the various stages of their development and other problems of equal interest, have occupied the continued attention of astronomers, spectroscopists, and chemists; but further reference to these difficult questions would be out of place here. The present sketch of the nature of spectrum-analysis applied to the stars is for the purpose of making its principle and method of observation intelligible to every educated reader, and to illustrate the marvellous precision and accuracy of the results attained by it. So confident are astronomers of this accuracy that nothing less than perfect correspondence of the various bright lines in the spectrum of an element in the laboratory with the dark lines in the spectrum of the sun or of a star is required before the presence of that element is accepted as proved. As Miss Clerke tersely puts it—'Spectroscopic coincidences admit of no compromise. Either they are absolute or they are worthless.'

Measurement of Motion in the Line of Sight

      We must now describe another and quite distinct application of the spectroscope, which is even more marvellous than that already described. It is the method of measuring the rate of motion of any of the visible heavenly bodies in a direction either directly towards us, or directly away from us, technically described as 'radial motion,' or by the expression—'in the line of sight.' And the extraordinary thing is that this power of measurement is altogether independent of distance, so that the rate of motion in miles per second of the remotest of the fixed stars, if sufficiently bright to show a distinct spectrum, can be measured with as much certainty and accuracy as in the case of a much nearer star or a planet.

      In order to understand how this is possible we have again to refer to the wave-theory of light; and the analogy of other wave-motions will enable us better to grasp the principle on which these calculations depend. If on a nearly calm day we count the waves that pass each minute by an anchored steamboat, and then travel in the direction the waves come from, we shall find that a larger number pass us in the same time. Again, if we are standing near a railway, and an engine comes towards us whistling, we shall notice that it changes its tone as it passes us; and as it recedes the sound will be in a lower key, although the engine may be at exactly the same distance from us as when it was approaching. Yet the sound does not change to the ear of the engine driver, the cause of the change being that the sound-waves reach us in quicker succession as the source of the waves is approaching us than when it is retreating from us. Now, just as the pitch of a note depends upon the rapidity with which the successive air-vibrations reach our ear, so does the colour of a particular part of the spectrum depend upon the rapidity with which the ethereal waves which produce colour reach our eyes; and as this rapidity is greater when the source of the light is approaching than when it is receding from us, a slight shifting of the position of the coloured bands, and therefore of the dark lines, will occur, as compared with their position in the spectrum of the sun or of any stationary source of light, if there is any motion sufficient in amount to produce a perceptible shift.

      That such a change of colour would occur was pointed out by Professor Doppler of Prague in 1842, and it is hence usually spoken of as the 'Doppler principle'; but as the changes of colour were so minute as to be impossible of measurement it was not at that time of any practical importance in astronomy. But when the dark lines in the spectrum were carefully mapped, and their positions determined with minute accuracy, it was seen that a means of measuring the changes produced by motion in the line of sight existed, since the position of any of the dark or coloured lines in the spectra of the heavenly bodies could be compared with those of the corresponding lines produced artificially in the laboratory. This was first done in 1868 by Sir William Huggins, who, by the use of a very powerful spectroscope constructed for the purpose, found that such a change did occur in the case of many stars, and that their rate of motion towards us or away from us—the radial motion—could be calculated. As the actual distance of some of these stars had been measured, and their change of position annually (their proper motion) determined, the additional factor of the amount of motion in the direction of our line of sight completed the data required to fix their true line of motion among the other stars. The accuracy of this method under favourable conditions and with the best instruments is very great, as has been proved by those cases in which we have independent means of calculating the real motion. The motion of Venus towards or away from us can be calculated with great accuracy for any period, being a resultant of the combined motions of the planet and of our earth in their respective orbits. The radial motions of Venus were determined at the Lick Observatory in August and September 1890, by spectroscopic observations, and also by calculation, to be as follows:—

      showing that the maximum error was only one mile per second, while the mean error was about a quarter of a mile. In the case of the stars the accuracy of the method has been tested by observations of the same star at times when the earth's motion in its orbit is towards or away from