Теорию игр можно использовать для объяснения, прогнозирования или рекомендаций при самых разных обстоятельствах. Хотя она пока и неидеальна в выполнении этих функций, она продолжает развиваться; кроме того, важность стратегического взаимодействия и стратегического мышления становится все более очевидной и осознаваемой.
Ключевые термины
Асимметричная информация
Внешняя неопределенность
Выигрыш
Игра
Игра с нулевой суммой
Игра с постоянной суммой
Инструменты скрининга
Кооперативная игра
Некооперативная игра
Несовершенная информация
Одновременные ходы
Ожидаемый выигрыш
Последовательные ходы
Равновесие
Рациональное поведение
Решение
Сигнал
Сигнализирование
Скрининг
Совершенная информация
Стратегическая игра
Стратегическая неопределенность
Стратегия
Эволюционная игра
Упражнения с решениями
S1[19]. Определите, какая из следующих ситуаций представляет собой игру, а какая – решение. В каждом конкретном случае укажите, какие особенности заставили вас отнести ее к той или иной категории.
a) В молочном отделе продуктового магазина находится группа покупателей, каждый из которых решает, с каким наполнителем купить йогурт.
b) Пара девочек-подростков выбирают платья для выпускного бала.
c) Студент колледжа размышляет над тем, на какой курс записаться для получения степени магистра.
d) New York Times и Wall Street Journal определяют стоимость онлайн-подписки на текущий год.
e) Кандидат на пост президента выбирает кандидата на должность вице-президента.
S2. Проанализируйте описанные ниже стратегические игры. В каждом случае укажите, к какой категории вы бы отнесли данную игру по шести параметрам, перечисленным в тексте. (i) Ходы в игре последовательные или одновременные? (ii) Это игра с нулевой суммой или нет? (iii) Это повторяющаяся игра? (iv) Присутствует ли в игре несовершенная информация и если да, то имеет ли место неполная (асимметричная) информация? (v) Правила игры фиксированные