26
Белые могут сделать ход любой из восьми пешек либо на одну, либо на две клетки вперед или одним из двух коней (на клетки a3, c3, f3 или h3).
27
Это можно было бы сделать только один раз, поскольку как только игра была бы решена, любой желающий мог бы воспользоваться этим решением и никому не было бы необходимости играть на самом деле. В таком случае все знали бы, выиграют ли белые или смогут ли черные добиться ничьей. Игроки бросили бы монету, чтобы решить, кто играет белыми, а кто черными. После этого игрокам был бы известен исход игры, поэтому они пожали бы друг другу руки и разошлись по домам.
28
Наш рассказ основан на следующих статьях, опубликованных в журнале Science: Adrian Cho, Program Proves That Checkers, Perfectly Played, Is a No-Win Situation, Science, vol. 317 (July 20, 2007), pp. 308–309; Jonathan Schaeffer et al., Checkers Is Solved, Science, vol. 317 (September 14, 2007), pp. 1518–22.
29
Дэвид Рейли впервые столкнулся с этой игрой, учась в магистратуре. Он был поражен тем, что, когда предложил другому студенту магистратуры, изучавшему экономику, разделить 100 долларов в соотношении 90:10, тот отказался. Подробное описание этой игры и других игр подобного рода можно найти здесь: Richard H. Thaler, Anomalies: The Ultimate Game, Journal of Economic Perspectives, vol. 2, no. 4 (Fall 1988), pp. 195–206; Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: Princeton University Press, 1993), pp. 263–69.
30
Отчет о результатах индонезийских экспериментов можно найти здесь: Lisa Cameron, Raising the Stakes in the Ultimatum Game: Experimental Evidence from Indonesia, Economic Inquiry, vol. 37, no. 1 (January 1999), pp. 47–59. Роберт Слоним и Элвин Рот опубликовали выводы, аналогичные выводам Кэмерон, но также они обнаружили, что по мере увеличения выигрышей игроки реже отклоняют предложения (во всех раундах игры). См. Robert Slonim and Alvin Roth, Learning in High Stakes Ultimatum Games: An Experiment in the Slovak Republic, Econometrica, vol. 66, no. 3 (May 1998), pp. 569–96.