Fк ≠ 2 * m * ω * dr / dt
Ликвидировать знак неравенства в последнем выражении можно только одним способом, а именно введением новой переменной (М» = Fк * r). Именно так и поступил Фейнман. Он фактически абсолютно произвольно ввёл в левую часть уравнения моментов новую физическую величину (М» = Fк * r), после чего получил искусственное равенство:
Fк * r = 2 * m * ω * V * r
После сокращения он получил ещё одну новую искусственную переменную:
Fк = 2 * m * ω * V
Отсюда следует, что сила Кориолиса в классической физике назначена произвольно путём введения новой переменной. Однако истинность существования новых переменных момента силы и классической силы Кориолиса в природе ни сам Кориолис, ни Фейнман и никто другой так до сих пор и не доказал. Мы же сейчас покажем, что такой истины в природе не существует. Если называть вещи своими именами, то уравнение моментов это есть не что иное, как работа силы на участке пути, равном радиусу. Именно из этих соображений и исходили авторы классической лже динамики вращательного движения при выводе уравнения моментов. При этом с постоянным радиусом и переменной угловой скоростью ни каких вопросов не возникает, т.к. это сводит задачу определения силы к простому масштабированию динамики Ньютона:
F * r = dL/dt = d (m * ω * r2) / dt = m * r2 * d (ω) / dt = m * a * r
При этом в масштабировании участвует только один радиус (радиус в первой степени), что делает бессмысленным определение динамики фактически выпрямленного окружного движения в масштабе радиуса через работу силы на участке, равном радиусу. Соотвентственно теряет смысл и классическая динамика вращательного движения со всеми его уравнениями-работами и моментами. Для прямолинейной версии окружного движения важен только один масштабный коэффициент радиуа:
F = d (m * ω * r) / dt = m * r * d (ω) / dt = m * ε = m * a
Работу силы можно определить так же и на переменном расстоянии. Если расстояние изменяется за счёт того же самого ускорения, которое определяет и силу, а по-другому просто и быть не может, то работа превращается в кинетическую энергию, которая, как известно, не зависит ни от ускорения, ни от времени, ни от расстояния. Она зависит только от начальной и конечной скорости движения:
F * S (t) = m * V2 / 2
Следовательно, как только мы объявили радиус-расстояние переменным, то скорость превращается в независимую переменную, которую по этой самой причине уже нельзя выразить через связь угловых и линейных перемещений, т.к. это становится простой и бессмысленной формальностью. Скорость в выражении для кинетической энергии есть величина постоянная. Если мы формально выразим её через угловую скорость и радиус-расстояние (V = ω * r), то любое изменение радиуса тут же повлечёт за собой обратно пропорциональное изменение угловой скорости и наоборот. При этом сама скорость не изменится,